
Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of will be:

Idea

DiFFERENTiATiON
STABLE

SYMBOLiC

SLOW

NUMERICAL

FAST
MANUAL

(imprACTicAL)
IuNSTABLE

Chain rule

Univariate chain rule
R : R → R, L : R → R W ∈ R

∂R

∂W
= ∂R

∂L

∂L

∂W

Multivariate chain rule

∂
∂t

f(x1(t), x2(t)) = ∂f

∂x1

∂x1

∂t
+ ∂f

∂x2

∂x2

∂t

f : Rn → R

∂
∂t

f(x1(t), … , xn(t)) = ∂f

∂x1

∂x1

∂t
+ … + ∂f

∂xn

∂xn

∂t

f : Rn → Rm j f

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/

where matrix is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of

∂
∂t

fj(x1(t), … , xn(t)) =
n∑

i=1

∂fj

∂xi

∂xi

∂t
=

n∑
i=1

Jji
∂xi

∂t
,

J ∈ Rm×n f

∂f

∂t
= J

∂x

∂t
⟺ (∂f

∂t
)⊤

= (∂x

∂t
)⊤

J ⊤

Backpropagation

L = L (y (z(w, x, b)), t)

z = wx + b
∂z

∂w
= x, ∂z

∂x
= w, ∂z

∂b
= 0

y = σ(z) ∂y

∂z
= σ′(z)

L = 1
2

(y − t)2 ∂L

∂y
= y − t,

∂L

∂t
= t − y

the loss function w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let be a topological ordering of the computation graph (i.e. parents come

before children). denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute as a function of its parents.

For :

Compute derivatives

Note, that term is coming from the children of , while is already precomputed

effectively.

L

vi = ∂L

∂vi

–

v1, . . . , vN

vN

Forward pass:

• i = 1, … , N

• vi

Backward pass:

• vN = 1–

• i = N − 1, … , 1

•
vi = ∑

j∈Children(vi)
vj

∂vj

∂vi

––

vj
–vi
–∂vj

∂vi

Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),

 lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where is a new vector-valued function that dots the gradient of at

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

 return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Open in ColabOpen in Colab

Hessian vector product

f : Rn → R
x ∈ Rn ∂ 2f(x)

v ↦ ∂ 2f(x) ⋅ v

v ∈ Rn

n

∂ 2f(x)v = ∂[x ↦ ∂f(x) ⋅ v] = ∂g(x),

g(x) = ∂f(x) ⋅ v f

x v

Code

Materials

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb

Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

•

•

•

•

•

https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

Convex set
Line segment
Suppose are two points in . Then the line segment between them is defined as follows:

x1

x2

θ = 1

θ = 0

θ = 0.6

Convex set
The set is called convex if for any from the line segment between them also lies in ,
i.e.

Examples:

Any affine set
Ray
Line segment

af://n0
af://n3
af://n7
af://n10

BRO BRO

BRO

NOT BRO

NOT BRO BRO

Related definitions

Convex combination

Let , then the point is called the convex combination

of points if

Convex hull

The set of all convex combinations of points from is called the convex hull of the set .

The set is the smallest convex set containing .
The set is convex if and only if .

af://n20
af://n21
af://n23

Examples:

BRO BRO

BRO

BRO

BRO BRO

Finding convexity
In practice it is very important to understand whether a specific set is convex or not. Two
approaches are used for this depending on the context.

By definition.
Show that is derived from simple convex sets using operations that preserve convexity.

By definition

Preserving convexity

The linear combination of convex sets is convex

Let there be 2 convex sets , let the set

Take two points from : and prove that the segment between
them $${theta s_1 + (1 - \theta)s_2, \theta \in [0,1]$$ also belongs to $$S$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition.
Otherwise, take 2 points and a segment between them. These points must lie in all intersecting
sets, and since they are all convex, the segment between them lies in all sets and, therefore, in
their intersection.

af://n32
af://n39
af://n41
af://n42
af://n49

The image of the convex set under affine mapping is convex

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix
inequality Here are symmetric matrices .

Note also that the prototype of the convex set under affine mapping is also convex.

Example 1

Prove, that ball in (i.e. the following set) - is convex.

Example 2

Which of the sets are convex: 1. Stripe, 1. Rectangle,
 1. Kleen, 1. A set of points

closer to a given point than a given set that does not contain a point,
 1. A set of points, which are closer to one set

than another, 1. A set of points,
, where is convex and is arbitrary. 1. A set of points whose

distance to a given point does not exceed a certain part of the distance to another given point is

af://n51
af://n57
af://n60

Example 3

Let is a random variable with a given probability distribution of , where
, and . It is said that the probability vector of outcomes of

belongs to the probabilistic simplex, i.e.
. Determine if the following sets of

are convex: 1. , where stands for expected value of , i.e.

 1. 1.

Convex function
Convex function
The function , which is defined on the convex set , is called convex , if:

for any and .
If above inequality holds as strict inequality and , then function is called strictly
convex

x1

x2 Convex
Non Convex

af://n63
af://n65
af://n67

Examples

The sum of the largest coordinates

Epigraph
For the function , defined on , the following set:

is called epigraph of the function

x1

x2

Epi f(x)
f(x)

Sublevel set
For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function

af://n72
af://n90
af://n95

x

f(x)

0

Sublevel set

β

L β

Criteria of convexity

First order differential criterion of convexity

The differentiable function defined on the convex set is convex if and only if
:

Let , then the criterion will become more tractable:

x

f(x)

0

Function
Global linear
lower bound

Second order differential criterion of convexity

Twice differentiable function defined on the convex set is convex if and only if
:

af://n100
af://n101
af://n107

In other words, :

Connection with epigraph

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set

If - is a convex function defined on the convex set , then for any sublevel set is
convex.

The function defined on the convex set is closed if and only if for any sublevel set
 is closed.

Reduction to a line

 is convex if and only if is convex set and the function defined on
 is convex for any , which allows to check convexity of the scalar

function in order to establish covexity of the vector function.

Strong convexity
, defined on the convex set , is called -strongly convex (strogly convex) on , if:

for any and for some .

x

f(x)

0

Function
Global quadratic

lower bound

Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable defined on the convex set -strongly convex if and only if :

Let , then the criterion will become more tractable:

af://n112
af://n114
af://n117
af://n119
af://n124
af://n125

Second order differential criterion of strong convexity

Twice differentiable function defined on the convex set is called -strongly convex if
and only if :

In other words:

Facts
 is called (strictly) concave, if the function - (strictly) convex.

Jensen's inequality for the convex functions:

for (probability simplex)

For the infinite dimension case:

If the integrals exist and

If the function and the set are convex, then any local minimum will

be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity

Non-negative sum of the convex functions:
Composition with affine function is convex, if is convex
Pointwise maximum (supremum): If are convex, then

 is convex
If is convex on for any : is convex

If is convex on , then - is convex with
Let and , where . If and are convex, and is
increasing, then is convex on

Other forms of convexity
Log-convex: is convex; Log convexity implies convexity.
Log-concavity: concave; not closed under addition!
Exponentially convex: , for
Operator convex:
Quasiconvex:
Pseudoconvex:

af://n130
af://n135
af://n147
af://n164

Discrete convexity: ; “convexity + matroid theory.”

References
Steven Boyd lectures
Suvrit Sra lectures
Martin Jaggi lectures

Example 4

Show, that is convex and concave.

Example 5

Show, that , where - is convex on .

Example 6

af://n180
http://web.stanford.edu/class/ee364a/lectures/functions.pdf
http://suvrit.de/teach/ee227a/lect3.pdf
https://github.com/epfml/OptML_course/raw/master/slides/lecture01.pdf
af://n189
af://n192
af://n195

Show, that is convex, using first and second order criteria, if .

Example 7

Find the set of , where the function is convex, strictly convex, strongly

convex?

af://n198

