Idea

DIFFERENTIATION

	$\uparrow_{\text {AUTABLE }}^{\text {STATIC }}$
SYMBOLIC	
SLOW	FAST
Numerical	MANUAL (impractical)
	Unstable

Automatic differentiation is a scheme, that allows you to compute a value of gradient of function with a cost of computing function itself only twice.

Chain rule

We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule

Suppose, we have the following functions $R: \mathbb{R} \rightarrow \mathbb{R}, L: \mathbb{R} \rightarrow \mathbb{R}$ and $W \in \mathbb{R}$. Then

$$
\frac{\partial R}{\partial W}=\frac{\partial R}{\partial L} \frac{\partial L}{\partial W}
$$

Multivariate chain rule

The simplest example:

$$
\frac{\partial}{\partial t} f\left(x_{1}(t), x_{2}(t)\right)=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}
$$

Now, we'll consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\frac{\partial}{\partial t} f\left(x_{1}(t), \ldots, x_{n}(t)\right)=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t}
$$

But if we will add another dimension $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, than the j-th output of f will be:

$$
\frac{\partial}{\partial t} f_{j}\left(x_{1}(t), \ldots, x_{n}(t)\right)=\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}} \frac{\partial x_{i}}{\partial t}=\sum_{i=1}^{n} J_{j i} \frac{\partial x_{i}}{\partial t}
$$

where matrix $J \in \mathbb{R}^{m \times n}$ is the jacobian of the f. Hence, we could write it in a vector way:

$$
\frac{\partial f}{\partial t}=J \frac{\partial x}{\partial t} \quad \Longleftrightarrow \quad\left(\frac{\partial f}{\partial t}\right)^{\top}=\left(\frac{\partial x}{\partial t}\right)^{\top} J^{\top}
$$

Backpropagation
The whole idea came from the applying chain rule to the computation graph of primitive operations

$$
L=L(y(z(w, x, b)), t)
$$

FORWARD PASS (COMPUTE LOSS)

All frameworks for automatic differentiation construct (implicitly or explicitly) computation graph. In deep learning we typically want to compute the derivatives of
the loss function L w.r.t. each intermediate parameters in order to tune them via gradient descent. For this purpose it is convenient to use the following notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}
$$

Let v_{1}, \ldots, v_{N} be a topological ordering of the computation graph (i.e. parents come before children). v_{N} denotes the variable we're trying to compute derivatives of (e.g. loss).

Forward pass:

For $i=1, \ldots, N$:
Compute v_{i} as a function of its parents.

Backward pass:

$\overline{v_{N}}=1$
For $i=N-1, \ldots, 1$:
Compute derivatives $\overline{v_{i}}=\sum_{j \in \operatorname{Children}\left(v_{i}\right)} \overline{v_{j}} \frac{\partial v_{j}}{\partial v_{i}}$
Note, that $\overline{v_{j}}$ term is coming from the children of $\overline{v_{i}}$, while $\frac{\partial v_{j}}{\partial v_{i}}$ is already precomputed effectively.

Forward pass
Backward pass
$z=w x+b$
$\overline{\mathcal{L}}=1$
$y=\sigma(z)$
$L=\frac{1}{2}(y-t)^{2}$
$\bar{R}=\overline{\mathcal{L}} \frac{d \mathcal{L}}{d R}=\overline{\mathcal{L}} \lambda$
$\bar{z}=\bar{y} \frac{d y}{d z}=\bar{y} \sigma^{\prime}(z)$
$\bar{L}=\overline{\mathcal{L}} \frac{d \mathcal{L}}{d L}=\overline{\mathcal{L}}$
$\bar{w}=\bar{z} \frac{d z}{d w}+\bar{R} \frac{d R}{d w}=\bar{z} x+\bar{R} w$
$R=\frac{1}{2} w^{2}$
$\bar{y}=\bar{L} \frac{d L}{d y}=\bar{L}(y-t)$
$\bar{b}=\bar{z} \frac{d z}{d b}=\bar{z}$
$\mathcal{L}=L+\lambda R$
$\bar{x}=\bar{z} \frac{d z}{d x}=\bar{z} w$

Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are already developed in effective manner in automatic differentiation frameworks.
Typically, we even do not construct or store the full Jacobian, doing matvec directly instead.

Example: element-wise exponent

$$
y=\exp (z) \quad J=\operatorname{diag}(\exp (z)) \quad \bar{z}=\bar{y} J
$$

See the examples of Vector-Jacobian Products from autodidact library:

lambda

Zambda

lambda
lambda
lambda
lambda
lambda
lambda

Hessian vector product

Interesting, that the similar idea could be used to compute Hessian-vector products, which is essential for second order optimization or conjugate gradient methods. For a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with continuous second derivatives (so that the Hessian matrix is symmetric), the Hessian at a point $x \in \mathbb{R}^{n}$ is written as $\partial^{2} f(x)$. A Hessian-vector product function is then able to evaluate

$$
v \mapsto \partial^{2} f(x) \cdot v
$$

for any vector $v \in \mathbb{R}^{n}$.

The trick is not to instantiate the full Hessian matrix: if n is large, perhaps in the millions or billions in the context of neural networks, then that might be impossible to store. Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an efficient Hessian-vector product function. We just have to use the identity

$$
\partial^{2} f(x) v=\partial[x \mapsto \partial f(x) \cdot v]=\partial g(x),
$$

where $g(x)=\partial f(x) \cdot v$ is a new vector-valued function that dots the gradient of f at x with the vector v. Notice that we're only ever differentiating scalar-valued functions of vector-valued arguments, which is exactly where we know grad is efficient.

Code

ce Open in Colab

Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6
CSC321 Lecture 10
Why you should understand backpropagation :)
JAX autodiff cookbook

Convex set

Line segment

Suppose x_{1}, x_{2} are two points in \mathbb{R}^{n}. Then the line segment between them is defined as follows:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \theta \in[0,1]
$$

x_{2}

$$
\theta=1
$$

Convex set

The set S is called convex if for any x_{1}, x_{2} from S the line segment between them also lies in S, i.e.

$$
\begin{gathered}
\forall \theta \in[0,1], \forall x_{1}, x_{2} \in S: \\
\theta x_{1}+(1-\theta) x_{2} \in S
\end{gathered}
$$

Examples:

- Any affine set
- Ray
- Line segment

Related definitions

Convex combination

Let $x_{1}, x_{2}, \ldots, x_{k} \in S$, then the point $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$ is called the convex combination of points $x_{1}, x_{2}, \ldots, x_{k}$ if $\sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0$

Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0\right\}
$$

- The set $\operatorname{conv}(S)$ is the smallest convex set containing S.
- The set S is convex if and only if $S=\boldsymbol{\operatorname { c o n v }}(S)$.

BRO

BRO
BRO
BRO

BRO

Finding convexity

In practice it is very important to understand whether a specific set is convex or not. Two approaches are used for this depending on the context.

- By definition.
- Show that S is derived from simple convex sets using operations that preserve convexity.

By definition

$$
x_{1}, x_{2} \in S, 0 \leq \theta \leq 1 \quad \rightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in S
$$

Preserving convexity

The linear combination of convex sets is convex

Let there be 2 convex sets S_{x}, S_{y}, let the set $S=\left\{s \mid s=c_{1} x+c_{2} y, x \in S_{x}, y \in S_{y}, c_{1}, c_{2} \in \mathbb{R}\right\}$
Take two points from S : $s_{1}=c_{1} x_{1}+c_{2} y_{1}, s_{2}=c_{1} x_{2}+c_{2} y_{2}$ and prove that the segment between them $\$ \$$ theta s_1 + (1 - \theta)s_2, \theta $\operatorname{lin}[0,1] \$ \$$ also belongs to $\$ \$ \mathrm{~S} \$ \$$

$$
\begin{gathered}
\theta s_{1}+(1-\theta) s_{2} \\
\theta\left(c_{1} x_{1}+c_{2} y_{1}\right)+(1-\theta)\left(c_{1} x_{2}+c_{2} y_{2}\right) \\
c_{1}\left(\theta x_{1}+(1-\theta) x_{2}\right)+c_{2}\left(\theta y_{1}+(1-\theta) y_{2}\right) \\
c_{1} x+c_{2} y \in S
\end{gathered}
$$

The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2 points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the segment between them lies in all sets and, therefore, in their intersection.

The image of the convex set under affine mapping is convex

$$
S \subseteq \mathbb{R}^{n} \text { convex } \rightarrow f(S)=\{f(x) \mid x \in S\} \text { convex } \quad(f(x)=\mathbf{A} x+\mathbf{b})
$$

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\ldots+x_{m} A_{m} \preceq B\right\}$ Here $A_{i}, B \in \mathbf{S}^{p}$ are symmetric matrices $p \times p$.

Note also that the prototype of the convex set under affine mapping is also convex.

$$
S \subseteq \mathbb{R}^{m} \text { convex } \rightarrow f^{-1}(S)=\left\{x \in \mathbb{R}^{n} \mid f(x) \in S\right\} \text { convex }(f(x)=\mathbf{A} x+\mathbf{b})
$$

Example 1

Prove, that ball in \mathbb{R}^{n} (i.e. the following set $\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\| \leq r\right\}$) - is convex.

Example 2

Which of the sets are convex: 1. Stripe, $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{\top} x \leq \beta\right\}$ 1. Rectangle, $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=\overline{1, n}\right\}$ 1. Kleen, $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{\top} x \leq b_{1}, a_{2}^{\top} x \leq b_{2}\right\}$ 1. A set of points closer to a given point than a given set that does not contain a point,
$\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S \subseteq \mathbb{R}^{n}\right\} 1$. A set of points, which are closer to one set than another, $\left\{x \in \mathbb{R}^{n} \mid \boldsymbol{\operatorname { d i s t }}(x, S) \leq \operatorname{dist}(x, T), S, T \subseteq \mathbb{R}^{n}\right\}$ 1. A set of points,
$\left\{x \in \mathbb{R}^{n} \mid x+X \subseteq S\right\}$, where $S \subseteq \mathbb{R}^{n}$ is convex and $X \subseteq \mathbb{R}^{n}$ is arbitrary. 1 . A set of points whose distance to a given point does not exceed a certain part of the distance to another given point is $\left\{x \in \mathbb{R}^{n} \mid\|x-a\|_{2} \leq \theta\|x b\|_{2}, a, b \in \mathbb{R}^{n}, 0 \leq 1\right\}$

Example 3

Let $x \in \mathbb{R}$ is a random variable with a given probability distribution of $\mathbb{P}\left(x=a_{i}\right)=p_{i}$, where $i=1, \ldots, n$, and $a_{1}<\ldots<a_{n}$. It is said that the probability vector of outcomes of $p \in \mathbb{R}^{n}$ belongs to the probabilistic simplex, i.e.
$P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\}=\left\{p \mid p_{1}+\ldots+p_{n}=1, p_{i} \geq 0\right\}$. Determine if the following sets of p are convex: 1. $\alpha<\mathbb{E} f(x)<\beta$, where $\mathbb{E} f(x)$ stands for expected value of $f(x): \mathbb{R} \rightarrow \mathbb{R}$, i.e.
$\mathbb{E} f(x)=\sum_{i=1}^{n} p_{i} f\left(a_{i}\right) 1 . \mathbb{E} x^{2} \leq \alpha 1 . \mathbb{V} x \leq \alpha$

Convex function

Convex function

The function $f(x)$, which is defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called convex S, if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1$.
If above inequality holds as strict inequality $x_{1} \neq x_{2}$ and $0<\lambda<1$, then function is called strictly convex S

Examples

- $f(x)=x^{p}, p>1, \quad S=\mathbb{R}_{+}$
- $f(x)=\|x\|^{p}, \quad p>1, S=\mathbb{R}$
- $f(x)=e^{c x}, \quad c \in \mathbb{R}, S=\mathbb{R}$
- $f(x)=-\ln x, \quad S=\mathbb{R}_{++}$
- $f(x)=x \ln x, \quad S=\mathbb{R}_{++}$
- The sum of the largest k coordinates $f(x)=x_{(1)}+\ldots+x_{(k)}, \quad S=\mathbb{R}^{n}$
- $f(X)=\lambda_{\max }(X), \quad X=X^{T}$
- $f(X)=-\log \operatorname{det} X, \quad S=S_{++}^{n}$

Epigraph

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\text { epi } f=\{[x, \mu] \in S \times \mathbb{R}: f(x) \leq \mu\}
$$

is called epigraph of the function $f(x)$

Sublevel set

For the function $f(x)$, defined on $S \subseteq \mathbb{R}^{n}$, the following set:

$$
\mathcal{L}_{\beta}=\{x \in S: f(x) \leq \beta\}
$$

is called sublevel set or Lebesgue set of the function $f(x)$

Criteria of convexity

First order differential criterion of convexity

The differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $\forall x, y \in S:$

$$
f(y) \geq f(x)+\nabla f^{T}(x)(y-x)
$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$
f(x+\Delta x) \geq f(x)+\nabla f^{T}(x) \Delta x
$$

Second order differential criterion of convexity

Twice differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $\forall x \in \operatorname{int}(S) \neq \emptyset:$

$$
\nabla^{2} f(x) \succeq 0
$$

In other words, $\forall y \in \mathbb{R}^{n}$:

$$
\left\langle y, \nabla^{2} f(x) y\right\rangle \geq 0
$$

Connection with epigraph

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set

If $f(x)$ - is a convex function defined on the convex set $S \subseteq \mathbb{R}^{n}$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is closed if and only if for any β sublevel set \mathcal{L}_{β} is closed.

Reduction to a line

$f: S \rightarrow \mathbb{R}$ is convex if and only if S is convex set and the function $g(t)=f(x+t v)$ defined on $\{t \mid x+t v \in S\}$ is convex for any $x \in S, v \in \mathbb{R}^{n}$, which allows to check convexity of the scalar function in order to establish covexity of the vector function.

Strong convexity

$f(x)$, defined on the convex set $S \subseteq \mathbb{R}^{n}$, is called μ-strongly convex (strogly convex) on S, if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)-\mu \lambda(1-\lambda)\left\|x_{1}-x_{2}\right\|^{2}
$$

for any $x_{1}, x_{2} \in S$ and $0 \leq \lambda \leq 1$ for some $\mu>0$.

Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n} \mu$-strongly convex if and only if $\forall x, y \in S$:

$$
f(y) \geq f(x)+\nabla f^{T}(x)(y-x)+\frac{\mu}{2}\|y-x\|^{2}
$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$
f(x+\Delta x) \geq f(x)+\nabla f^{T}(x) \Delta x+\frac{\mu}{2}\|\Delta x\|^{2}
$$

Second order differential criterion of strong convexity

Twice differentiable function $f(x)$ defined on the convex set $S \subseteq \mathbb{R}^{n}$ is called μ-strongly convex if and only if $\forall x \in \operatorname{int}(S) \neq \emptyset$:

$$
\nabla^{2} f(x) \succeq \mu I
$$

In other words:

$$
\left\langle y, \nabla^{2} f(x) y\right\rangle \geq \mu\|y\|^{2}
$$

Facts

- $f(x)$ is called (strictly) concave, if the function $-f(x)$ - (strictly) convex.
- Jensen's inequality for the convex functions:

$$
f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)
$$

for $\alpha_{i} \geq 0 ; \quad \sum_{i=1}^{n} \alpha_{i}=1$ (probability simplex)
For the infinite dimension case:

$$
f\left(\int_{S} x p(x) d x\right) \leq \int_{S} f(x) p(x) d x
$$

If the integrals exist and $p(x) \geq 0, \quad \int_{S} p(x) d x=1$

- If the function $f(x)$ and the set S are convex, then any local minimum $x^{*}=\arg \min _{x \in S} f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x)+\beta g(x),(\alpha \geq 0, \beta \geq 0)$
- Composition with affine function $f(A x+b)$ is convex, if $f(x)$ is convex
- Pointwise maximum (supremum): If $f_{1}(x), \ldots, f_{m}(x)$ are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex
- If $f(x, y)$ is convex on x for any $y \in Y: g(x)=\sup _{y \in Y} f(x, y)$ is convex
- If $f(x)$ is convex on S, then $g(x, t)=t f(x / t)$ - is convex with $x / t \in S, t>0$
- Let $f_{1}: S_{1} \rightarrow \mathbb{R}$ and $f_{2}: S_{2} \rightarrow \mathbb{R}$, where range $\left(f_{1}\right) \subseteq S_{2}$. If f_{1} and f_{2} are convex, and f_{2} is increasing, then $f_{2} \circ f_{1}$ is convex on S_{1}

Other forms of convexity

- Log-convex: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; not closed under addition!
- Exponentially convex: $\left[f\left(x_{i}+x_{j}\right)\right] \succeq 0$, for x_{1}, \ldots, x_{n}
- Operator convex: $f(\lambda X+(1-\lambda) Y) \preceq \lambda f(X)+(1-\lambda) f(Y)$
- Quasiconvex: $f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}$
- Pseudoconvex: $\langle\nabla f(y), x-y\rangle \geq 0 \longrightarrow f(x) \geq f(y)$
- Discrete convexity: $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$; "convexity + matroid theory."

References

- Steven Boyd lectures
- Suvrit Sra lectures
- MartinJaggilectures

Example 4

Show, that $f(x)=c^{\top} x+b$ is convex and concave.

Example 5

Show, that $f(x)=x^{\top} A x$, where $A \succeq 0$ - is convex on \mathbb{R}^{n}.

Show, that $f(x)$ is convex, using first and second order criteria, if $f(x)=\sum_{i=1}^{n} x_{i}^{4}$.

Example 7

Find the set of $x \in \mathbb{R}^{n}$, where the function $f(x)=\frac{-1}{2\left(1+x^{\top} x\right)}$ is convex, strictly convex, strongly convex?

