
Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions  and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of  will be:
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where matrix  is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of
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the loss function  w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let  be a topological ordering of the computation graph (i.e. parents come

before children).  denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute  as a function of its parents.

For :

Compute derivatives 

Note, that  term is coming from the children of , while  is already precomputed

effectively.
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Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add,         lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply,    lambda g, ans, x, y : unbroadcast(x, y * g),

                        lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract,    lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide,      lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ



defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function  with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point  is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if  is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad  (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where  is a new vector-valued function that dots the gradient of  at 

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad  is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

    return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Open in ColabOpen in Colab

Hessian vector product
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v ↦ ∂ 2f(x) ⋅ v

v ∈ Rn

n
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https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb


Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook

•

•

•

•

•

https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html


Convex set  
Line segment  
Suppose  are two points in . Then the line segment between them is defined as follows:

x1

x2

θ = 1

θ = 0

θ = 0.6

Convex set  
The set  is called convex if for any  from  the line segment between them also lies in ,
i.e.

Examples:  

Any affine set
Ray
Line segment
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Related definitions  

Convex combination  

Let , then the point  is called the convex combination

of points  if 

Convex hull  

The set of all convex combinations of points from  is called the convex hull of the set .

The set  is the smallest convex set containing .
The set  is convex if and only if .
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Examples: 

BRO BRO
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Finding convexity  
In practice it is very important to understand whether a specific set is convex or not. Two
approaches are used for this depending on the context.

By definition.
Show that  is derived from simple convex sets using operations that preserve convexity.

By definition  

Preserving convexity  

The linear combination of convex sets is convex  

Let there be 2 convex sets , let the set 

Take two points from :  and prove that the segment between
them $${theta s_1 + (1 - \theta)s_2, \theta \in [0,1]$$ also belongs to $$S$$

The intersection of any (!) number of convex sets is convex  

If the desired intersection is empty or contains one point, the property is proved by definition.
Otherwise, take 2 points and a segment between them. These points must lie in all intersecting
sets, and since they are all convex, the segment between them lies in all sets and, therefore, in
their intersection.
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The image of the convex set under affine mapping is convex  

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix
inequality  Here  are symmetric matrices .

Note also that the prototype of the convex set under affine mapping is also convex.

Example 1  

Prove, that ball in  (i.e. the following set ) - is convex.

Example 2  

Which of the sets are convex: 1. Stripe,  1. Rectangle, 
 1. Kleen,  1. A set of points

closer to a given point than a given set that does not contain a point, 
 1. A set of points, which are closer to one set

than another,  1. A set of points, 
, where  is convex and  is arbitrary. 1. A set of points whose

distance to a given point does not exceed a certain part of the distance to another given point is 
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Example 3  

Let  is a random variable with a given probability distribution of , where 
, and . It is said that the probability vector of outcomes of 

belongs to the probabilistic simplex, i.e. 
. Determine if the following sets of 

are convex: 1. , where  stands for expected value of , i.e. 

 1.  1.  

Convex function  
Convex function  
The function , which is defined on the convex set , is called convex , if:

for any  and .
If above inequality holds as strict inequality  and , then function is called strictly
convex 

x1

x2 Convex
Non Convex
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Examples  

The sum of the largest  coordinates 

Epigraph  
For the function , defined on , the following set:

is called epigraph of the function 

x1

x2

Epi f(x)
f(x)

Sublevel set  
For the function , defined on , the following set:

is called sublevel set or Lebesgue set of the function 
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x
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Criteria of convexity  

First order differential criterion of convexity  

The differentiable function  defined on the convex set  is convex if and only if 
:

Let , then the criterion will become more tractable:

x

f(x)

0

Function
Global linear 
lower bound

Second order differential criterion of convexity  

Twice differentiable function  defined on the convex set  is convex if and only if 
:
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In other words, :

Connection with epigraph  

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set  

If  - is a convex function defined on the convex set , then for any  sublevel set  is
convex.

The function  defined on the convex set  is closed if and only if for any  sublevel set 
 is closed.

Reduction to a line  

 is convex if and only if  is convex set and the function  defined on 
 is convex for any , which allows to check convexity of the scalar

function in order to establish covexity of the vector function.

Strong convexity  
, defined on the convex set , is called -strongly convex (strogly convex) on , if:

for any  and  for some .

x

f(x)

0

Function
Global quadratic 

lower bound

Criteria of strong convexity  

First order differential criterion of strong convexity  

Differentiable  defined on the convex set  -strongly convex if and only if :

Let , then the criterion will become more tractable:
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Second order differential criterion of strong convexity  

Twice differentiable function  defined on the convex set  is called -strongly convex if
and only if :

In other words:

Facts  
 is called (strictly) concave, if the function  - (strictly) convex.

Jensen's inequality for the convex functions:

for  (probability simplex)

For the infinite dimension case:

If the integrals exist and 

If the function  and the set  are convex, then any local minimum  will

be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity  
 

Non-negative sum of the convex functions: 
Composition with affine function  is convex, if  is convex
Pointwise maximum (supremum): If  are convex, then 

 is convex
If  is convex on  for any :  is convex

If  is convex on , then  - is convex with 
Let  and , where . If  and  are convex, and  is
increasing, then  is convex on 

Other forms of convexity  
Log-convex:  is convex; Log convexity implies convexity.
Log-concavity:  concave; not closed under addition!
Exponentially convex: , for 
Operator convex: 
Quasiconvex: 
Pseudoconvex: 
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Discrete convexity: ; “convexity + matroid theory.”

References  
Steven Boyd lectures
Suvrit Sra lectures
Martin Jaggi lectures

Example 4  

Show, that  is convex and concave.

Example 5  

Show, that , where  - is convex on . 

Example 6  
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http://web.stanford.edu/class/ee364a/lectures/functions.pdf
http://suvrit.de/teach/ee227a/lect3.pdf
https://github.com/epfml/OptML_course/raw/master/slides/lecture01.pdf
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Show, that  is convex, using first and second order criteria, if . 

Example 7  

Find the set of , where the function  is convex, strictly convex, strongly

convex?
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