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Suppose, our target function is the sum of functions.

This problem usually arises in Deep Learning, where the gradient of the loss function is

calculating over the huge number of data points, which could be very expensive in

terms of the iteration cost (calculation of gradient is linear in ).

Thus, we can switch from the full gradient calculation to its unbiased estimator:

where we randomly choose  index of point at each iteration uniformly:

Iterations could be  times cheaper! But convergence requires .

We consider classic finite-sample average minimization:

Let us consider stochastic gradient descent assuming  is Lipschitz:
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Convergence

General setup

min
x∈Rp

f(x) = min
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xk+1 = xk − αk∇fik
(xk) (SGD)



Lipschitz continiity implies:

using :

Now let’s take expectation with respect to :

Using linearity of expectation:

Since uniform sampling implies unbiased estimate of gradient: 

:

This inequality simply requires that the gradient grows faster than a quadratic function

as we move away from the optimal function value. Note, that strong convexity implies 

, but not vice versa. Using  we can write:

This bound already indicates, that we have something like linear convergence if far from

solution and gradients are similar, but no progress if close to solution or have high

variance in gradients at the same time.
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Polyak-Lojasiewicz conditions
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Stochastic subgradient descent



for some .

For convex  we have

Here we can see, that step-size  controls how fast we move towards solution. And

squared step-size  controls how much variance moves us away. Usually, we bound 

 by some constant .

If we also have strong convexity:

And finally, with :

where 

Conditions
Type of

convergence

Convex, Lipschitz-continuous gradient (L) Sublinear

-Strongly convex, Lipschitz-continuous

gradient (L)
Sublinear

Convex, non-smooth Sublinear

-Strongly convex, non-smooth Sublinear
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(SSD)
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Bounds
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