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A classical problem of function minimization is considered.

The bottleneck (for almost all gradient methods) is choosing step-size, which can

lead to the dramatic difference in method’s behavior.

One of the theoretical suggestions: choosing stepsize inversly proportional to the

gradient Lipschitz constant .

In huge-scale applications the cost of iteration is usually defined by the cost of

gradient calculation (at least ).

If function has Lipschitz-continious gradient, then method could be rewritten as

follows:

Let’s consider a linear approximation of the differentiable function  along some

direction :

We want  to be a decreasing direction:

Summary

xk+1 = xk − ηk∇f(xk) (GD)

•

•

ηk = 1
L

•

O(p)
•

xk+1 = xk − 1
L

∇f (xk) =

= arg min
x∈Rn

{f (xk) + ⟨∇f (xk), x − xk⟩ + L

2
∥x − xk∥2

2}

Intuition

Direction of local steepest descent
f

h, ∥h∥2 = 1

f(x + ηh) = f(x) + η⟨f ′(x), h⟩ + o(η)

h

f(x + ηh) < f(x)

f(x) + η⟨f ′(x), h⟩ + o(η) < f(x)
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and going to the limit at :

Also from Cauchy–Bunyakovsky–Schwarz inequality:

Thus, the direction of the antigradient

gives the direction of the steepest local decreasing of the function .

The result of this method is

Let’s consider the following ODE, which is referred as Gradient Flow equation.

and discretize it on a uniform grid with  step:

where  and  - is the grid step.

From here we get the expression for 

which is exactly gradient descent.

η → 0

⟨f ′(x), h⟩ ≤ 0

|⟨f ′(x), h⟩| ≤ ∥f ′(x)∥2∥h∥2 → ⟨f ′(x), h⟩ ≥ −∥f ′(x)∥2∥h∥2 = −∥f ′(x)∥2

h = −
f ′(x)

∥f ′(x)∥2

f

xk+1 = xk − ηf ′(xk)

Gradient flow ODE

dx

dt
= −f ′(x(t))

η

xk+1 − xk

η
= −f ′(xk),

xk ≡ x(tk) η = tk+1 − tk

xk+1

xk+1 = xk − ηf ′(xk),

Necessary local minimum condition



This is, surely, not a proof at all, but some kind of intuitive explanation.

Some general highlights about Lipschitz properties are needed for explanation. If a

function  is continuously differentiable and its gradient satisfies Lipschitz

conditions with constant , then :

which geometrically means, that if we’ll fix some point  and define two

parabolas:

Then

Now, if we have global upper bound on the function, in a form of parabola, we can try to

go directly to its minimum.

f ′(x) = 0
− ηf ′(x) = 0
x − ηf ′(x) = x

xk − ηf ′(xk) = xk+1

Minimizer of Lipschitz parabola

f : Rn → R
L ∀x, y ∈ Rn

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥2,

x0 ∈ Rn

ϕ1(x) = f(x0) + ⟨∇f(x0), x − x0⟩ − L

2
∥x − x0∥2,

ϕ2(x) = f(x0) + ⟨∇f(x0), x − x0⟩ + L

2
∥x − x0∥2.

ϕ1(x) ≤ f(x) ≤ ϕ2(x) ∀x ∈ Rn.

∇ϕ2(x) = 0
∇f(x0) + L(x∗ − x0) = 0

x∗ = x0 − 1
L

∇f(x0)

xk+1 = xk − 1
L

∇f(xk)
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This way leads to the  stepsize choosing. However, often the  constant is not

known.

But if the function is twice continuously differentiable and its gradient has Lipschitz

constant , we can derive a way to estimate this constant :

or

Stepsize choosing strategy  significantly affects convergence. General Line search

algorithms might help in choosing scalar parameter.

For :

1
L L

L ∀x ∈ Rn

∥∇2f(x)∥ ≤ L

−LIn ⪯ ∇2f(x) ⪯ LIn

Stepsize choosing strategies
ηk

Constant stepsize
f ∈ C

1,1
L

ηk = η
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With choosing , we have:

The latter 2 strategies are the simplest in terms of implementation and analytical

analysis. It is clear that this approach does not often work very well in practice (the

function geometry is not known in advance).

More theoretical than practical approach. It also allows you to analyze the convergence,

but often exact line search can be difficult if the function calculation takes too long or

costs a lot.

Interesting theoretical property of this method is that each following iteration is

orthogonal to the previous one:

Optimality conditions:

f(xk) − f(xk+1) ≥ η (1 − 1
2

Lη)∥∇f(xk)∥2

η = 1
L

f(xk) − f(xk+1) ≥ 1
2L

∥∇f(xk)∥2

Fixed sequence

ηk = 1
√k + 1

Exact line search aka steepest descent

ηk = arg min
η∈R+

f(xk+1) = arg min
η∈R+

f(xk − η∇f(xk))

ηk = arg min
η∈R+

f(xk − η∇f(xk))

∇f(xk+1)⊤∇f(xk) = 0

Goldstein-Armijo

Convergence analysis



Assume that  is convex and differentiable, and additionally 

i.e. ,  is Lipschitz continuous with constant .

Since  Lipschitz with constant , which means , we have :

Now we’ll consider second order Taylor approximation of  and Taylor’s Remainder

Theorem (we assum, that the function  is continuously differentiable), we have 

For the gradient descent we have :

Now, if we’ll consider constant stepsize strategy and will maximize 

, we’ll get .

That’s why we have:

Convex case

Lipischitz continuity of the gradient

f : Rn → R
∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ ∀x, y ∈ Rn

∇f L > 0

∇f L ∇2f ⪯ LI ∀x, y, z

(x − y)⊤(∇2f(z) − LI)(x − y) ≤ 0

(x − y)⊤∇2f(z)(x − y) ≤ L∥x − y∥2

f(y)
f

∀x, y, ∃z ∈ [x, y] :

f(y) = f(x) + ∇f(x)⊤(y − x) + 1
2

(x − y)⊤∇2f(z)(x − y)

≤ f(x) + ∇f(x)⊤(y − x) + L

2
∥x − y∥2

x = xk, y = xk+1, xk+1 = xk − ηk∇f(xk)

f(xk+1) ≤ f(xk) + ∇f(xk)⊤(−ηk∇f(xk)) + L

2
(ηk∇f(xk))2

≤ f(xk) − (1 − Lη

2
)η∥∇f(xk)∥2

Optimal constant stepsize

(1 − Lη

2
)η → max

η
η = 1

L

f(xk+1) ≤ f(xk) − 1
2L

∥∇f(xk)∥2

Convexity

f(xk) ≤ f(x∗) + ∇f(xk)⊤(xk − x∗)



Thus, summing over all iterations, we have:

where . And due to convexity:

If the function is strongly convex:

…

Conditions
Type of

convergence

Convex

Lipschitz-

continuous

function( )

Sublinear  

Convex

f(xk+1) ≤ f(x∗) + ∇f(xk)⊤(xk − x∗) − 1
2L

∥∇f(xk)∥2

= f(x∗) + L

2
(∥xk − x∗∥2 − ∥xk − x∗ − 1

L
∇f(xk)∥2)

= f(x∗) + L

2
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2)

k∑
i=1

(f(xi) − f(x∗)) ≤ L

2
(∥x0 − x∗∥2 − ∥xk − x∗∥2)

≤ L

2
∥x0 − x∗∥2 = LR2

2
,

R = ∥x0 − x∗∥

f(xk) − f(x∗) ≤ 1
k

k∑
i=1

(f(xi) − f(x∗)) ≤ LR2

2k
= R2

2ηk

Strongly convex case

f(y) ≥ f(x) + ∇f(x)⊤(y − x) + µ

2
∥y − x∥2 ∀x, y ∈ Rn

∥xk+1 − x∗∥2 ≤ (1 − ηµ)∥xk − x∗∥2

Bounds

∥f(xk) − f(x∗)∥ ≤ ∥xk − x∗∥ ≤

G

O ( 1
k

) GR
k



Lipschitz-

continuous gradient

( )

Sublinear  

-Strongly convex

Lipschitz-

continuous

gradient( )

  Linear

-Strongly convex

Lipschitz-

continuous hessian(

)

 
Locally linear

 - initial distance

The zen of gradient descent. Moritz Hardt

Great visualization

Cheatsheet on the different convergence theorems proofs

L

O ( 1
k

) LR2

k

µ

L

(1 − ηµ)kR2

µ

M

R < R
–

RR

R − R
(1 −

2µ

L + 3µ
)––

• R = ∥x0 − x∗∥
• R = 2µ

M

–

Materials
•

•

•
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