
Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT

and Convex optimization problem)

In fact, there might be very challenging to recognize the convenient form of

optimization problem.

Analytical solution of KKT could be inviable.

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least

one of the optimal) solution .

x0

x1
x2

x3x4

def GeneralScheme(x, epsilon):

 while not StopCriterion(x, epsilon):

 OracleResponse = RequestOracle(x)

 x = NextPoint(x, OracleResponse)

 return x

General formulation
min
x∈Rn

f(x)

s.t. gi(x) ≤0, i = 1, … , m

hj(x) =0, j = 1, … , k

•

•

Iterative methods

{xt},

x∗

https://fmin.xyz/docs/theory/Optimality/
https://fmin.xyz/docs/theory/Convex_optimization_problem/

f(xk), f’(x k), f’’(xk)

ORACLE

Black - box

xk

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function is Lipschitz continuous on :

with some constant (Lipschitz constant). Here - the -dimensional unit cube

Oracle conception

Complexity

Challenges

Unsolvability

min
x∈Rn

f(x)

s.t. x ∈ Bn

f(⋅) : Rn → R Bn

|f(x) − f(y)| ≤ L∥x − y∥∞∀x, y ∈ Bn,

L Bn n

Bn = {x ∈ Rn ∣ 0 ≤ xi ≤ 1, i = 1, … , n}

Our goal is to find such for some positive . Here is the global

minima of the problem. Uniform grid with points on each dimension guarantees at

least this quality:

which means, that

Our goal is to find the for some . So, we need to sample points, since we

need to measure function in points. Doesn’t look scary, but if we’ll take

, computations on the modern personal computers will take

31,250,000 years.

Argument closeness:

Function value closeness:

Closeness to a critical point

But and are unknown!

Sometimes, we can use the trick:

Note: it’s better to use relative changing of these values, i.e. .

~x : |f(~x) − f ∗| ≤ ε ε f ∗

p

∥~x − x∗∥∞ ≤ 1
2p

,

|f(~x) − f(x∗)| ≤ L

2p

p ε (L
2ε)n

pn

L = 2, n = 11, ε = 0.01

Stopping rules
•

∥xk − x∗∥2 < ε

•

∥fk − f ∗∥2 < ε

•

∥f ′(xk)∥2 < ε

x∗ f ∗ = f(x∗)

∥xk+1 − xk∥ = ∥xk+1 − xk + x∗ − x∗∥ ≤ ∥xk+1 − x∗∥ + ∥xk − x∗∥ ≤ 2ε

∥xk+1 − xk∥2

∥xk∥2

Local nature of the methods

https://fmin.xyz/

Line search

Zero order methods

First order methods

Adaptive metric methods

LP and simplex algorithm

Automatic differentiation

TABLE OF CONTENTS

•

•

•

•

•

•

https://fmin.xyz/docs/methods/line_search/line_search/
https://fmin.xyz/docs/methods/zom/zom/
https://fmin.xyz/docs/methods/fom/fom/
https://fmin.xyz/docs/methods/adaptive_metrics/adaptive_metric/
https://fmin.xyz/docs/methods/Simplex/
https://fmin.xyz/docs/methods/Autograd/

Methods / Line search

Suppose, we have a problem of minimization of a function of scalar

variable:

Sometimes, we refer to the similar problem of finding minimum on the line segment

:

Line search is one of the simplest formal optimization problems, however, it is an

important link in solving more complex tasks, so it is very important to solve it

effectively. Let’s restrict the class of problems under consideration where is a

unimodal function.

Function is called unimodal on , if there is , that

 and

Let be unimodal function on . Than if , then:

if

if

Problem
f(x) : R → R

f(x) → min
x∈R

[a, b]

f(x) → min
x∈[a,b]

f(x)

f(x) [a, b] x∗ ∈ [a, b]
f(x1) > f(x2) ∀a ≤ x1 < x2 < x∗ f(x1) < f(x2) ∀x∗ < x1 < x2 ≤ b

Key property of unimodal functions
f(x) [a, b] x1 < x2 ∈ [a, b]

• f(x1) ≤ f(x2) → x∗ ∈ [a, x2]
• f(x1) ≥ f(x2) → x∗ ∈ [x1, b]

https://fmin.xyz/docs/methods/Methods/

Open in ColabOpen in Colab

CMC seminars (ru)

Binary search

Golden search

Inexact line search

Successive parabolic interpolation

Code

References
•

TABLE OF CONTENTS

•

•

•

•

https://fmin.xyz/
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Line_search.ipynb
http://www.machinelearning.ru/wiki/images/4/4d/MOMO16_min1d.pdf
https://fmin.xyz/docs/methods/line_search/binary_search/
https://fmin.xyz/docs/methods/line_search/golden_search/
https://fmin.xyz/docs/methods/line_search/inexact/
https://fmin.xyz/docs/methods/line_search/parabola/

Methods / Line search / Binary search

We divide a segment into two equal parts and choose the one that contains the solution

of the problem using the values of functions.

def binary_search(f, a, b, epsilon):

 c = (a + b) / 2

 while abs(b - a) > epsilon:

 y = (a + c) / 2.0

 if f(y) <= f(c):

 b = c

 c = y

 else:

 z = (b + c) / 2.0

 if f(c) <= f(z):

 a = y

 b = z

 else:

 a = c

 c = z

 return c

Idea

Algorithm

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/exercises/line_search/

The length of the line segment on -th iteration:

For unimodal functions, this holds if we select the middle of a segment as an output of

the iteration :

Note, that at each iteration we ask oracle no more, than 2 times, so the number of

function evaluations is , which implies:

By marking the right side of the last inequality for , we get the number of method

iterations needed to achieve accuracy:

Bounds
k + 1

∆k+1 = bk+1 − ak+1 = 1
2k

(b − a)

xk+1

|xk+1 − x∗| ≤
∆k+1

2
≤ 1

2k+1
(b − a) ≤ (0.5)k+1 ⋅ (b − a)

N = 2 ⋅ k

|xk+1 − x∗| ≤ (0.5)
N
2 +1 ⋅ (b − a) ≤ (0.707)N b − a

2

ε

ε

K = ⌈log2
b − a

ε
− 1⌉

Methods / Line search / Golden search

The idea is quite similar to the dichotomy method. There are two golden points on the

line segment (left and right) and the insightful idea is, that on the next iteration one of

the points will remain the golden point.

lk rk

lk+1 rk+1 lk+1 rk+1

k iteration

k+1 iteration

def golden_search(f, a, b, epsilon):

 tau = (sqrt(5) + 1) / 2

 y = a + (b - a) / tau**2

 z = a + (b - a) / tau

 while b - a > epsilon:

 if f(y) <= f(z):

 b = z

 z = y

 y = a + (b - a) / tau**2

 else:

 a = y

 y = z

 z = a + (b - a) / tau

 return (a + b) / 2

Idea

Algorithm

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/exercises/line_search/

where .

The geometric progression constant more than the dichotomy method -

worse than

The number of function calls is less than for the dichotomy method - worse

than - (for each iteration of the dichotomy method, except for the first one,

the function is calculated no more than 2 times, and for the gold method - no more

than one)

Bounds

|xk+1 − x∗| ≤ bk+1 − ak+1 = (1
τ

)
N−1

(b − a) ≈ 0.618k(b − a),

τ = √5+1
2

• 0.618
0.5

• 0.707
0.618

Methods / Line search / Inexact line search

This strategy of inexact line search works well in practice, as well as it has the following

geometric interpretation:

Let’s consider the following scalar function while being at a specific point of :

consider first order approximation of :

A popular inexact line search condition stipulates that should first of all give sufficient

decrease in the objective function , as measured by the following inequality:

for some constant . (Note, that stands for the first order Taylor

approximation of). This is also called Armijo condition. The problem of this

condition is, that it could accept arbitrary small values , which may slow down solution

of the problem. In practice, is chosen to be quite small, say .

To rule out unacceptably short steps one can introduce a second requirement:

for some constant , where is a constant from Armijo condition. Note that

the left-handside is simply the derivative , so the curvature condition ensures

that the slope of at the target point is greater than times the initial slope

. Typical values of for Newton or quasi-Newton method. The

sufficient decrease and curvature conditions are known collectively as the Wolfe

conditions.

Sufficient decrease
xk

ϕ(α) = f(xk − α∇f(xk)), α ≥ 0

ϕ(α)

ϕ(α) ≈ f(xk) − α∇f(xk)⊤∇f(xk)

α

f

f(xk − α∇f(xk)) ≤ f(xk) − c1 ⋅ α∇f(xk)⊤∇f(xk)

c1 ∈ (0, 1) c1 = 1
ϕ(α)

α

c1 c1 ≈ 10−4

Curvature condition

−∇f(xk − α∇f(xk))⊤∇f(xk) ≥ c2∇f(xk)⊤(−∇f(xk))

c2 ∈ (c1, 1) c1

∇αϕ(α)
ϕ(α) c2

∇αϕ(α)(0) c2 ≈ 0.9

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/exercises/line_search/

Let’s consider also 2 linear scalar functions :

and

Note, that Goldstein-Armijo conditions determine the location of the function

between and . Typically, we choose and , while

.

f(xk)

!1(η) η*

!2(η)

η

! η
! η

0

Numerical Optimization by J.Nocedal and S.J.Wright.

Goldstein conditions
ϕ1(α), ϕ2(α)

ϕ1(α) = f(xk) − c1α∥∇f(xk)∥2

ϕ2(α) = f(xk) − c2α∥∇f(xk)∥2

ϕ(α)
ϕ1(α) ϕ2(α) c1 = ρ c2 = 1 − ρ

ρ ∈ (0.5, 1)

References
•

