Theory = Duality

Duality

Duality lets us associate to any constrained optimization problem a concave
maximization problem, whose solutions lower bound the optimal value of the original
problem. What is interesting is that there are cases, when one can solve the primal
problem by first solving the dual one. Now, consider a general constrained optimization

problem:
Primal: f(z) — 15161? Dual: g(y) — I;/leafzx
We'll build g(y), that preserves the uniform bound: A ’F(")
gy) < f(z)| VzeS,VyeQ \
As a consequence: 6}' ‘.:“""7'\ N
- /\
sigegly) < minie) ‘3@

We'll consider one (of the many) possible way to construct g(y) in case, when we have
a general mathematical programming problem with functional constraints:

X" - prugese (P) fo() = min "aaacdq

zER™

ga(x:t) _ P’l' st. fi(x) <0,i=1,...,m (P)

hi(x)=0,i=1,...,p

And the Lagrangian, associated with this problem:

L(z, A, v) = fo(z) + Em: Aifi(z) + Z vihi(z) = fo(z) + A f(z) + v h(z)

We define the Lagrange dual function (or just dual function) g : R™ x RP — R as the
minimum value of the Lagrangian over z: for A € R™, v € R?

urpu Y ™
m p
g\, v) = xeéﬁlifo L(z, A\, v)|= xeégifo (fo(w) + ; Aifi(z) + Zl Vihi(x)>

a&_ad&um P U9

When the Lagrangian is unbounded below in x, the dual function takes on the value
—00. Since the dual function is the pointwise infimum of a family of affine functions of
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()\, 1/), it is concave, even when the original problem is not convex.

The dual function yields lower b(l)\unds the optl al vaIu of tpe original robI
Forany A >~ 0, v: L(’()}\, = oﬁ +>\ “\”\(’2 ¢§3
/A
oo r] B wis

Suppose some £ is a feasible point (& € .S) for the original problem, i.e., f;(£) < 0 and

hi(£) = 0, A = 0. Then we have: R
s S
L(&,\,v) = fo(2) + X' f(2) + v h(z) < fo(2)

Hence %( R,‘J)< (&)

inf L(z,\,v) <|L(z,\,V)|< fo(2)

wEdomfo

()")\ = g\, v)
94 \ <19 ‘ﬁlm\( o

A natural question is: what is the best lower bound that can be obtained from t

Lagrange dual function? This leads to the following optimization problem:
A V\%\A KA’N*
>\)

The term “dual feasible’, to describe a pair (A, ) with A = 0 and g(\, v) > —oo, now

g(A\,v) - max
AER™, yERP

st. A >0

makes sense. It means, as the name implies, that ()\, 1/) is feasible for the dual problem.
We refer to (A*, v*
for the above problem.

) as dual optimal or optimal Lagrange multipliers if they are optimal

Summary
Primal Dual
Function fo(z) g\ v) = xelﬁl?lfo L(z, \,v)
Variables z € domfy C R" AeR?ve RP

Constraints

Problem

X\i>0,Yicl,m

g(\,v) —» max
AeRm veRp

st.A>0



x* if feasible, A", v* if max is achieved,

Ot. | * * * * *
prma p* = fo(z*) d* = g(\*,v")

Weak duality

It is common to name this relation between optimals of primal and dual problems as
weak duality. For problem, we have: %CE r(A‘A

EETE I P

While the difference between them is often called duality gap: 5&30?

Note, that we always have weak duality, if we've formulated primal and dual problem. It
means, that if we have managed to solve the dual problem (which is always convex, no
matter whether the initial problem was or not), then we have some lower bound.
Surprisingly, there are some notable cases, when these solutions are equal.

Strong duality CuebAd
cﬁp(dﬁcuuoc’t’o

Strong duality happens if duality gap is zero:

p*:d*

Notice: both p* and d* may be +o0.

Several sufficient conditions known!

"Easy"” necessary and sufficient conditions: unknown.

P*>/8(>‘) ) VA}N

Construction of lower bound on solution of the direct problem.

Useful features

It could be very complicated to solve the initial problem. But if we have the dual
problem, we can take an arbitrary y € ) and substitute it in g(y) - we'll immediately
obtain some lower bound.

Checking for the problem'’s solvability and attainability of the solution.

From the inequality max g(y) < min f,(z) follows: if min f,(z) = —oo, then
ye zeS zeS



) = & and vice versa.

Sometimes it is easier to solve a dual problem than a primal one.

In this case, if the strong duality holds: g(y*) = fo(z*) we lose nothing.

Obtaining a lower bound on the function’s residual.

fo(z) — fy < fo(z) — g(y) for an arbitrary y € €2 (suboptlmallty certificate).

Moreover, p* € [g(y), fo(z)],d* € [9(y), fo(x)]
=419

Dual function is always concave

£ ¢
As a pointwise minimum of affine functions. ) 0 é -(c( a>

Examples

Simple projection onto simplex with duality

To find the Euclidean projection of € R™ onto probability simplex
P={zeR"|2>0,1Tz =1}, we solve the following problem:

1
5ly—2l; — min
yeR™~0

st.1'y=1

Hint: Consider the problem of minimizing E Hy - CEHg subject to subject to

y~=0, lTy = 1. Form the partial Lagrangian

1
L(y,v) = lly —zls +v(1'y = 1),

leaving the constraint y > 0 implicit. Show that y = (x — 1) minimizes L(y, v)
overy = 0.

Underdetermined Linear least squares

Problem
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z' r — min

zeR™

s.t. Az = b

Lagrangian

L(z,v)=z'z+v'(Az —b)

Dual function

9(v) = min L(z,v)

zeR"™

Setting gradient to zero to find minimum &)

V,L(z,v) =2z +v'A=2c+A'v=0 - == —%ATV

g(v) = iVTAATV + I/T(—%AATV —b) = —il/TAATV —b'v

Here we see lower bound property:
N 1
p* > —ZI/TAATI/ —b'y, Wv

Let's solve the dual problem:

1

& =b"(447) b

Calculate the primal optimal and check whether this problem has strong duality or not.

LP duality. Standard form

¢'z — min
rER™

st. Az =b
x>0

LP duality. Inequality form

¢z — min

x€RM
s.t. Az <b



A nonconvex quadratic problem with strong duality

On rare occasions strong duality obtains for a nonconvex problem. As an important
example, we consider the problem of minimizing a nonconvex quadratic function over
the unit ball

z Az +2b"z — min
rER™

st.x'x <1

where A € S", A % 0 and b € R". Since A # 0, this is not a convex problem. This
problem is sometimes called the trust region problem, and arises in minimizing a
second-order approximation of a function over the unit ball, which is the region in
which the approximation is assumed to be approximately valid.

Lagrangian and dual function

Lz, )=z Az +2b'z+ ANz'z—1)=2'(A+ M)z +2b'z— )\

b (A+AD)Tb—X fA+AX =0
gA) =19 _ .
0, otherwise
Dual problem
—b"(A+ )b — X\ — max
AER
st. A+ A >0

A AER

s A > —Apin(A)

n Tb 2
_ZM_A%HI&X
= At A

Connection of Fenchel and Lagrange duality

fo(z) = ifz(xz) — min

zER™

st.a'z="»

The dual problem is thus



— by — Z fi(—va;) — max
i—1

veR

6. A > —Apin(A)

with (scalar) variable v € R. Now suppose we have found an optimal dual variable v*
(There are several simple methods for solving a convex problem with one scalar
variable, such as the bisection method.). It is very easy to recover the optimal value for
the primal problem.

Fenchel - Rockafellar problem

Problem

Let f : E — Rand g : G — R — function, defined on the sets F and G in Euclidian
Spaces V and W respectively. Let f* : E, — R, g* : G, — R be the conjugate
functions to the f and g respectively. Let A : V' — W — linear mapping. We call
Fenchel - Rockafellar problem the following minimization task:

f(z) + g(Az) — min
z€ENA-YG)

where A7 (G) := {z € V : Az € G} — preimage of G. We'll build the dual problem
using variable separation. Let's introduce new variable y = Ax. The problem could be
rewritten:

+ — '
f(z) + g(y) ,nin

s.t. Ax =y

Lagrangian
L(z,y,\) = f(x) + g(y) + A" (Az — y)

Dual function

gi(A) = erEIfi?e GL(fE, Y, )

= min [f(z) + (4°A) Te] + min [g(y) ~ ATy) =

E yeG
= — Iilgg [(—A*)\)TCIZ — f(x)} — Iéleaéx [)\Ty - g(y)}

Now, we need to remember the definition of the Conjugate function:



sup [Ty — g(y)] =
yeG

{g*()\), if A € G,

~+00, otherwise

sup [(~4°)) Tz — f(x)] =

2CE +00, otherwise

{f*(—A*)\), if A e (—A%) (B,

So, we have:

gi(A) = min L(z,y,A) =

zeE yeG
(=g V) = (AN i AeG.n(—A%)YE,)
| —oo, otherwise

which allows us to formulate one of the most important theorems, that connects dual
problems and conjugate functions:

Fenchel - Rockafellar theorem Let f : £ — Rand g : G — R — function, defined on
the sets F and (G in Euclidian Spaces V and W respectively. Let

f*:E., — R, g": G — R be the conjugate functions to the f and g respectively.
Let A : V — W — linear mapping. Let p*, d* € [—00, +00] - optimal values of primal
and dual problems:

p" = f(z) + 9(Az) — min
z€ENA-YG)

d"=f"(-A"A)+g"(\) — min :
AeG.N(—A%)HE,)

Then we have weak duality: p* > d*. Furthermore, if the functions f and g are convex
and A(relint(FE)) Nrelint(G) # &, then we have strong duality: p* = d*. While
points z* € EN A1 (G) and \* € G, N (—A*) ! (E,) are optimal values for primal
and dual problem if and only if:
—A* X" € 0f(z™)
A* € 9g(Ax™)

Convex case is especially important since if we have Fenchel - Rockafellar problem with
parameters ( f, g, A), than the dual problem has the form (f*, g*, —A*).
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Theory = Convex optimization problem

Convex optimization problem

Note, that there is an agreement in notation of mathematical programming. The
problems of the following type are called Convex optimization problem:

f(z) — min
zeR™
s.t.gi(z) <0,i=1,...,m (COP)
Ax = b,
where all the functions f(x), g (), - .., g,,(x) are convex and all the equality

constraints are affine. It sounds a bit strange, but not all convex problems are convex
optimization problems.

f(z) — min, (CP)

€S

where f(x) is a convex function, defined on the convex set S. The necessity of affine
equality constraint is essential (see Slater’s condition in Duality).

For example, this problem is not a convex optimization problem (but implies minimizing
the convex function over the convex set):

x2 +w2 — min
1 2
rER™

T
<0 CP
1+ — (CP)

(z1 +z)? =0,

S.t.

while the following equivalent problem is a convex optimization problem

:13% +m§ — min

zeR™
s.b. —1— <0 (COP)
1+ x;
ZLq -+ Lo = 0,

Such confusion in notation is sometimes being avoided by naming problems of type
(CP) as abstract form convex optimization problem.
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