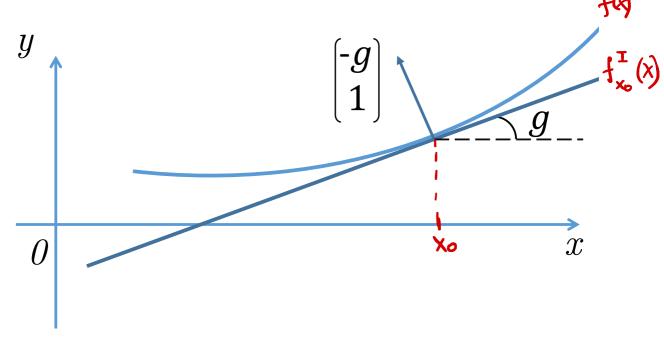
Subgradient and subdifferential

Motivation

Важным свойством непрерывной выпуклой функции f(x) является то, что в выбранной точке x_0 для всех $x \in \mathrm{dom}\, f$ выполнено неравенство:

неравенство:
$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

для некоторого вектора g, то есть касательная к графику функции является глобальной оценкой снизу для функции. $f(x) - g(x) = x^2 + y^2$



- ullet Если f(x) дифференцируема, то $g =
 abla f(x_0)$
- Не все непрерывные выпуклые функции дифференцируемы :)

Не хочется лишаться такого вкусного свойства.

Subgradient

Вектор g называется **субградиентом** функции $f(x):S o\mathbb{R}$ в точке x_0 , если $orall x\in S$:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

Subdifferential

Множество всех субградиентов функции f(x) в точке x_0 называется субдифференциалом f в x_0 и обозначается $\partial f(x_0)$.

- ullet Если $x_0 \in \mathbf{ri}S$, то $\partial f(x_0)$ выпуклое компактное множество.
- ullet Выпуклая функция f(x) дифференцируема в точке $x_0 \iff \partial f(x_0) =
 abla f(x_0)$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.



Moreau - Rockafellar theorem (subdifferential of a linear combination)

Пусть $f_i(x)$ - выпуклые функции на выпуклых множествах $S_i,\ i=\overline{1,n}.$

$$\partial_S f(x)$$
 на множестве $S = igcap_{i=1}^n S_i$ и

Тогда, если
$$\bigcap_{i=1}^n \mathbf{ri} S_i \neq \emptyset$$
 то функция $f(x) = \sum_{i=1}^n a_i f_i(x), \ a_i > 0$ имеет субдифференциал
$$\partial_S f(x)$$
 на множестве $S = \bigcap_{i=1}^n S_i$ и
$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x) = \mathbf{q}_i \cdot \mathbf{d}_{\mathbf{q}} \mathbf{f}_{\mathbf{q}}(\mathbf{x}) + \mathbf{q}_{\mathbf{q}} \mathbf{d}_{\mathbf{q}}(\mathbf{x}) = \mathbf{q}_i \cdot \mathbf{d}_{\mathbf{q}}(\mathbf{x})$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Пусть $f_i(x)$ - выпуклые функции на открытом выпуклом множестве $S\subseteq \mathbb{R}^n,\; x_0\in S$, а поточечный максимум определяется как $f(x) = \max f_i(x)$. Тогда:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ igcup_{i \in I(x_0)} \partial_S f_i(x_0)
ight\},$$

где
$$I(x)=\{i\in [1:m]: \overline{f_i(x)=f(x)\}}$$

Chain rule for subdifferentials

Пусть g_1,\ldots,g_m - выпуклые функции на открытом выпуклом множестве $S\subseteq\mathbb{R}^n$, $g=(g_1,\ldots,g_m)$ - образованная из них вектор - функция, arphi - монотонно неубывающая выпуклая функция на открытом выпуклом множестве $U\subseteq\mathbb{R}^m$, причем $g(S)\subseteq U$. Тогда субдифференциал функции $f(x)=arphi\left(g(x)
ight)$ имеет вид:

$$\partial f(x) = igcup_{p \in \partial arphi(u)} \Biggl(\sum_{i=1}^m p_i \partial g_i(x) \Biggr),$$

где
$$u = g(x)$$

int (S) - MH- to Brex BHYTPERHUX TOREX BEK) = SS ~ (x ∈ S | 3 € >0 se ints:

relint(S)

relint(S)

relative (S)

interior(S)

В частности, если функция arphi дифференцируема в точке u=g(x), то формула запишется так:

$$\partial f(x) = \sum_{i=1}^m rac{\partial arphi}{\partial u_i}(u) \partial g_i(x)$$

Subdifferential calculus

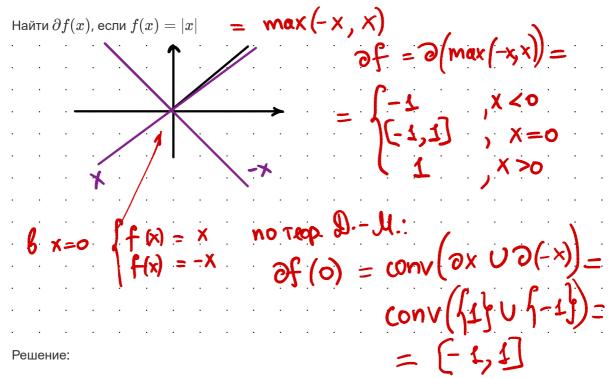
- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \geq 0$
- ullet $\partial (\sum f_i)(x) = \sum \partial f_i(x)$, f_i выпуклые функции
- ullet $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f выпуклая функция

Examples

Концептуально, различают три способа решения задач на поиск субградиента:

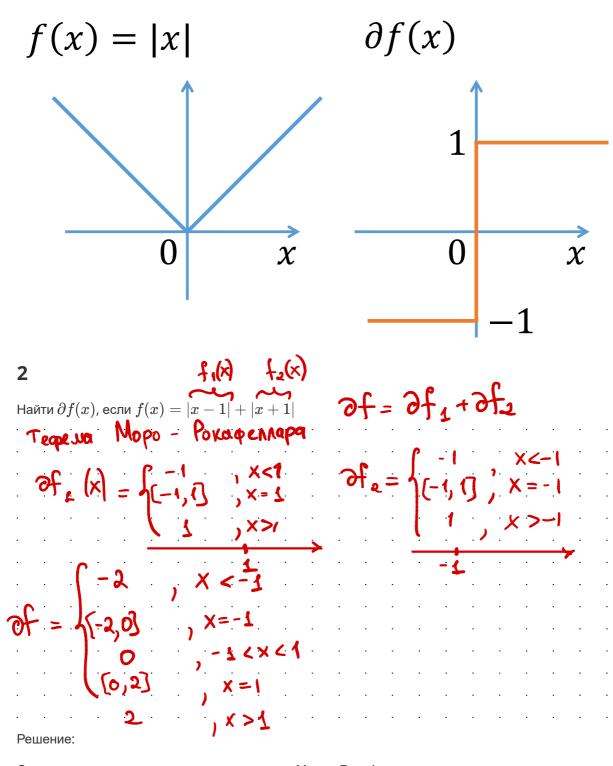
- Теоремы Моро Рокафеллара, композиции, максимума
- Геометрически
- По определению

1



Решить задачу можно либо геометрически (в каждой точке числовой прямой указать угловые коэффициенты прямых, глобально подпирающих функцию снизу), либо по теореме Моро - Рокафеллара, рассмотрев f(x) как композицию выпуклых функций:

$$f(x) = \max\{-x, x\}$$

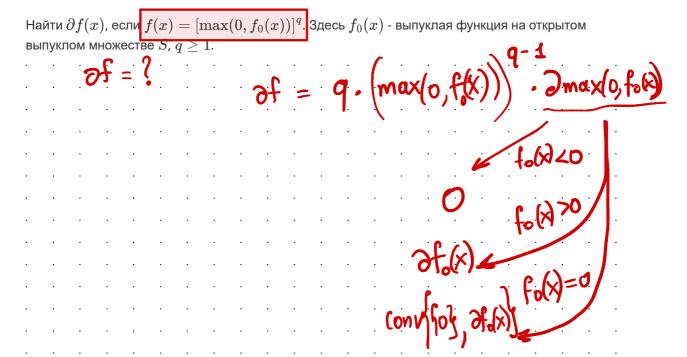


Совершенно аналогично применяем теорему Моро - Рокафеллара, учитывая следующее:

$$\partial f_1(x) = egin{cases} -1, & x < 1 \ [-1;1], & x = 1 \ 1, & x > 1 \end{cases} \quad \partial f_2(x) = egin{cases} -1, & x < -1 \ [-1;1], & x = -1 \ 1, & x > -1 \end{cases}$$

Таким образом:

$$\partial f(x) = egin{cases} -2, & x < -1 \ [-2;0], & x = -1 \ 0, & -1 < x < 1 \ [0;2], & x = 1 \ 2, & x > 1 \end{cases}$$



Решение

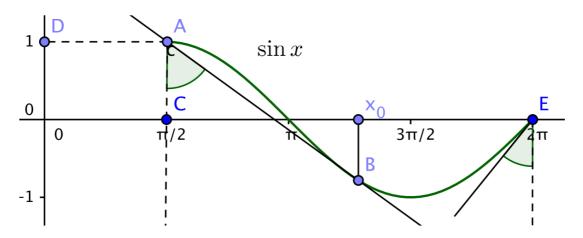
Согласно теореме о композиции (функция $\varphi(x)=x^q$ - дифференцируема), а $g(x)=\max(0,f_0(x))$ имеем: $\partial f(x)=q(g(x))^{q-1}\partial g(x)$

По теореме о поточечном максимуме:

$$\partial g(x) = egin{cases} \partial f_0(x), & f_0(x) > 0, \ \{0\}, & f_0(x) < 0 \ \{a \mid a = \lambda a', \; 0 \leq \lambda \leq 1, \; a' \in \partial f_0(x)\}, \; \; f_0(x) = 0 \end{cases}$$

4

Найти $\partial f(x)$, если $f(x)=\sin x, x\in [\pi/2;2\pi]$



$$\partial f_G(x) = \begin{cases} (-\infty, \cos x_0], & x = \pi/2; \\ \varnothing, & x \in (\pi/2, x_0); \\ \cos x, & x \in [x_0, 2\pi); \\ [1, +\infty], & x = 2\pi. \end{cases}$$

Найти
$$\partial f(x)$$
, если $f(x) = |c_1^{ op}x| + |c_2^{ op}x|$

$$f_1 = |C_1^T X|$$

$$\begin{aligned}
\sigma(x) &= \begin{cases}
C_1 & C_1^T \times > 0 \\
conv[(-c_1),(c_1)] & C_1^T \times = 0
\end{cases} \\
&- C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
0 &\in C_1 \\
0 &\in C_1
\end{cases} + |(-\theta)C_1|
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times > 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T \times < 0
\end{cases} \\
&= \begin{cases}
C_1 & C_1^T$$

Решение: Пусть $f_1(x) = |c_1^ op x|$, а $f_2(x) = |c_2^ op x|$. Так как эти функции выпуклы, субдифференциал их суммы равен сумме субдифференциалов. Найдем каждый из них:

$$\partial f_1(x) = \partial \left(\max\{c_1^ op x, -c_1^ op x\}
ight) = egin{cases} -c_1, & c_1^ op x < 0 \ \mathbf{conv}(-c_1; c_1), & c_1^ op x = 0 \ c_1, & c_1^ op x > 0 \ c_2, & c_2^ op x < 0 \ \mathbf{conv}(-c_2; c_2), & c_2^ op x = 0 \ c_2, & c_2^ op x > 0 \end{cases}$$

Далее интересными представляются лишь различные взаимные расположения векторов c_1 и c_2 , рассмотрение которых предлагается читателю.

6

Найти $\partial f(x)$, если $f(x) = \|x\|_1$

waxen upon ville ogui gs (>), To

Решение: По определению

$$\|x\|_1 = |x_1| + |x_2| + \ldots + |x_n| = s_1 x_1 + s_2 x_2 + \ldots + s_n x_n$$
b equotophoto $\|X\|_1 = |x_1| + |x_2| + \ldots + |x_n| = s_1 x_1 + s_2 x_2 + \ldots + s_n x_n$
 $-X_1$
 $-X_2$
 $-X_3$
 $-X_4$
 $-X_4$

 X_{i}

Причем, правило выбора "активной" функции поточечного максимума в каждой точке следующее:

- ullet Если j-ая координата точки отрицательна, $s_i^{\jmath}=-1$
- Если ј-ая координата точки положительна, $s_i^j = 1$
- Если ј-ая координата точки равна нулю, то подходят оба варианта коэффициентов и соответствующих им функций, а значит, необходимо включать субградиенты этих функций в объединение в теореме Дубовицкого - Милютина.

В итоге получаем ответ:

$$\partial f(x) = ig\{g \ : \ \|g\|_\infty \le 1, \quad g^ op x = \|x\|_1ig\}$$

References

Lecture Notes for ORIE 6300: Mathematical Programming I by Damek Davis

