Convex set

Line segment | Oreexok

Suppose z;, z» are two points in R*. Then the line segmeht between them is defined as follows:

x =0z + (1—0)z, 6 €]0,1]
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Convex set

The set S'is called convex if for any 1, 2 from S the line segment between them also liesin S,
l.e. S - @em. MH-80

V8 € [0,1], V1,23 €S :
Oz; + (1 —0)z2 € S

Examples:

e Any affine set
e Ray
e Line segment
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Convex combination

Letxy, za,...,zr € 5, then the poin]f1 21 + 0222 + . .. + Oz fis called the convex combination

ofpointsml,mz,...,mkifzkjei=1, 0; >0 A o
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Convex hull

The set of all convex combinations of points from S is called the convex hull of the set S.

k k
conv(S) = {ZQ,&:Z | z; € S,ZOi =106 > 0}
i=1 i=1

e The set conv(S) is the smallest convex set containing 5. €= oV
e The set S'is convex if and only if S = conv(S).
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Finding convexity

In practice it is very important to understand whether a specific set is convex or not. Two
approaches are used for this depending on the context.

e By definition.
e Show that S'is derived from simple convex sets using operations that preserve convexity.

y definition
@ v /6 —%lnﬂw

z1,22€85,0<0<1 — Oz +(1—0)z2 €S
AnmAAA - L S

@ Preserving convexity ~ No onp,

@ e linear combination of convex sets is convex

Let there be 2 convex sets\%,& lettheset S ={s|s=ciz+cy, € S;, y€ Sy, c1,c2 € R}

Take two points from S: s1 = c1x1 + c2y1, S2 = c1Z2 + c2y2 and prove that the segment between
them $${theta s_1 + (1 - \theta)s_2, \theta \in [0,1]1$$ also belongs to $$5$$
gx + Ca- G&

S = C,
c_%.n Jr8
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0s1 + (1 —0)sy
O(ciz1 + cayr) + (1 — O)(crz2 + coy2)
c1 (0:61 + (1 — 9).’132) +ca (9y1 + (1 — 0)y2)

cax+cyesS

Q . 5. The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition.

Otherwise, take 2 points and a segment between them. These points must lie in all intersecting
sets, and since they are all convex, the segment between them lies in all sets and, therefore, in
their intersection.
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The image of the convex set under affine mapping is convex
S CR" convex — f(S)={f(z) ]|z € S} convex (f(z)=Axz+Db)

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix
inequality {z | 1 A; + ...+ z,, A, < B} Here A;, B € SP are symmetric matrices p x p.

Note also that the prototype of the convex set under affine mapping is also convex.
S CR™ convex — f 1(S)={z € R"| f(z) € S} convex (f(z)= Az +b)

Example 1

~

Prove, that ball in R (i.e. the following set {x | ||x — x.|| < r}) - is convex.
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Example 2 CA‘TX S?u
Which of the setg are convex: 1|. Stripe, {z € R" | @ < o'z < B}|1. Rectangle,
{zeR"|a; <z; < Bi,i=1,n}1.Kleen, {z € R" | a] & < by,a; z < by} 1. Aset of points
EIosFtoLaAgiven poiﬁt than a giAv:a‘n set that does not contain a point,

{z €R" | ||z — zol]2 < ||z — yl|2, Yy € S C R™} 1. A set of points, which are closer to one set
than another, {z € R" | dist(z, S) < dist(z,T),S,T C R"} 1. A set of points,

{zr e R" |z + X C S}, where S C R™sconvex and X C R" is arbitrary. 1. A set of points whose
distance to a given point does exc::(%lﬁ{part of the distance to another given point is
O3 O < 1}

{z e R" | H:):—?,{SG zblfs, a,b € RL
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Le a random variable with a given probability distribution of|P(z = a;) = p; Jwhere
1=1,...,n,anda; <...< a,.ltissaid that the probability vector of outcomes of p € R"
belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p=0y={p|p1 +... +p, = 1,p; > 0}. Determine if the following sets of p
are convex: 1. a < Ef(z) < B, where E f(x) stands for expected value of f(z) : R — R, i.e.

Ef(m):épif(aiﬂ Ez’> <al1l.Vz<a
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Convex function

Convex function

The function f(z), which is defined on the convex set S C R", is called convex S, if:
(nhudT b
fAz1 + (1= A)za) < Af(21) + (1= N f(z2)

Aewncena
foranyz;,xy € Sand0 < A\ < 1.
If above inequality holds as strict inequality 1 # @2 and 0 < A < 1, then function is called strictly
convex S

(Q%A ——  Convex

—— Non Convex
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Examples

® f(:]:):;vp,p>]_, S=R;
fl@) =|z[’, p>1,5=R
e f(z)=¢€", ceR,S=R
f(.'L‘) = —].nﬁ, S = R++
e f(z)=zlnz, S=R,;
e The sum of the largest k coordinates f(z) = Ty +...+zE, S=R"
o f(X)= Az (X), X=XT
e f(X)=—logdetX, S=25%,
Epigraph
For the function f(z), defined on § C R", the following set: Haac?dqu K
epi f = {[z,u] € S xR: f(z) < p}

is called epigraph of the function f(z)
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Sublevel set
For the function f(z), defined on S C R", the following set:
Lsg={zxecS: f(x) <p}

is called sublevel set or Lebesgue set of the function f(z)



f(x} === Sublevel set

0

Criteria of convexity

First order differential criterion of convexity

The differentiable function f(z) defined on the convex set § C R™ is convex if and only if

Ve,y € S

f(y) > f(z) + VT (2)(y - @)

Let y = = + Axz, then the criterion will become more tractable:

Second order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set § C R" is convex if and only if
Vz € int(S) # 0:

Vif(z) = 0




In other words, Yy € R™:
(y, V* f(z)y) > 0
Connection with epigraph

The function is convex if and only if its epigraph is convex set.

Connection with sublevel set

If f(x) - is a convex function defined on the convex set S C R", then for any 3 sublevel set L is
convex.

The function f(z) defined on the convex set S C R" is closed if and only if for any 8 sublevel set
Ly is closed.

Reduction to a line

f: S — Ris convexif and only if S is convex set and the function g(t) = f(z + tv) defined on
{t | z + tv € S} is convex for any z € S,v € R", which allows to check convexity of the scalar
function in order to establish covexity of the vector function.

Strong convexity

f(z), defined on the convex set S C R", is called pu-strongly convex (strogly convex) on S, if:
FOz1 + (1= Naa) < Mf(en) + (1= X f(z2) — pA(L = A)l|z1 - 22

forany z1,22 € Sand 0 < X\ <1 for some > 0.

—— Function
f(x)A ____ Global quadratic
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Criteria of strong convexity

First order differential criterion of strong convexity

Differentiable f(x) defined on the convex set S C R" u-strongly convex if and only if Vz,y € S:
F®) > f(@) + V7 @)y — ) + Sy — |

Let y = x + Az, then the criterion will become more tractable:



fl@+ Az) = f(z) + VT (2)Ac + & Az’

Second order differential criterion of strong convexity

Twice differentiable function f(z) defined on the convex set S C R" is called p-strongly convex if
and only if Vz € int(S) # 0:

V2 f(z) = uI

In other words:

(y, V? f(z)y) > pllyl?

Facts

e f(z)is called (strictly) concave, if the function — f(z) - (strictly) convex.

e Jensen's inequality for the convex functions:
n n
f Zaifci Szaif(l’i)
i=1 i=1

n

fora; > 0; > a; = 1(probability simplex)
i=1

For the infinite dimension case:

£ [av@riz | < [ fepia)e
S S

If the integrals exist and p(z) > 0, [p(z)dz =1
s

e If the function f(z) and the set S are convex, then any local minimum z* = arg mi? f(z) will
e

be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity

¢ Non-negative sum of the convex functions: af(z) + Bg(z), (a > 0,5 > 0)

e Composition with affine function f(Az + b) is convex, if f(z) is convex

e Pointwise maximum (supremum): If fi(z), ..., fm(x) are convex, then
f(z) = max{fi(z),..., fm(z)} is convex

e If f(z,y)is convex onz foranyy € Y: g(x) = sup f(z,y) is convex
yeyY

e If f(z)is convex on S, then g(z,t) = tf(x/t) - is convex with z/t € S,t > 0
e letf; :S1 —» Rand f2 : S — R, where range(f1) C Sa. If fi and fa are convex, and f3 is
increasing, then f> o f; is convex on Sy

Other forms of convexity

e Log-convex: log f is convex; Log convexity implies convexity.

e Log-concavity: log f concave; not closed under addition!

e Exponentially convex: [f(z; + z;)] = 0, for z1,...,z,

e Operator convex: f(AX + (1 = A)Y) < Af(X)+ (1 = AN f(Y)
e Quasiconvex: f(Az + (1 — N)y) < max{f(z), f(y)}
e Pseudoconvex: (Vf(y),z —y) >0 — f(z) > f(y)



e Discrete convexity: f : Z" — Z; “convexity + matroid theory.”
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Example 4

Show, that f( z) = c' x + bis convex and concave.

Dv{l— C o\{'—.(c&x)
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Example 5

Show, that f(z x! Az, where A = O is convex on R™.

= (Mh‘)x = Lp,x -
v%= 2A>o

Example 6

$6)= \I\x b\\L s
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X (K A}x =0
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Show, that f(z) is convex, using first and second order criteria, if f(z) = Y 7.
i=1

Example 7

Find the set of x € R", where the function f(z) = is convex, strictly convex, strongly

21+ z"z)
convex?



