
Methods / Automatic differentiation

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

We will illustrate some important matrix calculus facts for specific cases

Suppose, we have the following functions  and . Then

The simplest example:

Now, we’ll consider :

But if we will add another dimension , than the -th output of  will be:
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where matrix  is the jacobian of the . Hence, we could write it in a vector

way:

The whole idea came from the applying chain rule to the computation graph of primitive

operations

All frameworks for automatic differentiation construct (implicitly or explicitly)

computation graph. In deep learning we typically want to compute the derivatives of
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Backpropagation
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the loss function  w.r.t. each intermediate parameters in order to tune them via

gradient descent. For this purpose it is convenient to use the following notation:

Let  be a topological ordering of the computation graph (i.e. parents come

before children).  denotes the variable we’re trying to compute derivatives of (e.g.

loss).

For :

Compute  as a function of its parents.

For :

Compute derivatives 

Note, that  term is coming from the children of , while  is already precomputed

effectively.
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Univariate logistic least squares regression

Forward pass Backward pass

The reason why it works so fast in practice is that the Jacobian of the operations are

already developed in effective manner in automatic differentiation frameworks.

Typically, we even do not construct or store the full Jacobian, doing matvec directly

instead.

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add,         lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply,    lambda g, ans, x, y : unbroadcast(x, y * g),

                        lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract,    lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide,      lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Jacobian vector product

Example: element-wise exponent

y = exp (z) J = diag(exp(z)) –z = –yJ



defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

Interesting, that the similar idea could be used to compute Hessian-vector products,

which is essential for second order optimization or conjugate gradient methods. For a

scalar-valued function  with continuous second derivatives (so that the

Hessian matrix is symmetric), the Hessian at a point  is written as . A

Hessian-vector product function is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if  is large, perhaps in the millions

or billions in the context of neural networks, then that might be impossible to store.

Luckily, grad  (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an

efficient Hessian-vector product function. We just have to use the identity

where  is a new vector-valued function that dots the gradient of  at 

 with the vector . Notice that we’re only ever differentiating scalar-valued functions

of vector-valued arguments, which is exactly where we know grad  is efficient.

import jax.numpy as jnp

def hvp(f, x, v):

    return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)
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Hessian vector product
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Autodidact - a pedagogical implementation of Autograd

CSC321 Lecture 6

CSC321 Lecture 10

Why you should understand backpropagation :)

JAX autodiff cookbook
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