
$f: R^{n} \rightarrow R$
$\nabla f=? \in \mathbb{R}^{n}$

ow
Automatic differentiation is a scheme, that allows you to compute a value of gradient of function with a cost of computing function itself only twice.

Chain rule
We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule

$$
W \rightarrow L \rightarrow R
$$

Suppose, we have the following functions $R: \mathbb{R} \rightarrow \mathbb{R}, L: \mathbb{R} \rightarrow \mathbb{R}$ and $W \in \mathbb{R}$. Then

$$
\frac{\partial R}{\partial W}=\frac{\partial R}{\partial L} \frac{\partial L}{\partial W} \quad R(L(W))
$$

Multivariate chain rule
The simplest example:

$$
\begin{aligned}
& \qquad \frac{\partial}{\partial t} f\left(x_{1}(t), x_{2}(t)\right)=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}{ }^{t^{\boldsymbol{\top}}} \rightarrow X_{2}(t) \\
& \text { nsider } f: \mathbb{R}^{n} \rightarrow \mathbb{R}: \\
& \frac{\partial}{\partial t} f\left(x_{1}(t), \ldots, x_{n}(t)\right)=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial t} \quad \nabla_{x}^{\prime} f^{\top} \cdot \frac{d \mathbf{x}}{d t}
\end{aligned}
$$

Now, we'll consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

But if we will add another dimension $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, than the j-th output of f will be:

$$
\frac{\partial}{\partial t} f_{j}\left(x_{1}(t), \ldots, x_{n}(t)\right)=\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}} \frac{\partial x_{i}}{\partial t}=\sum_{i=1}^{n} J_{j i} \frac{\partial x_{i}}{\partial t}
$$

where matrix $J \in \mathbb{R}^{m \times n}$ is the jacobian of the f. Hence, we could write it in a vector way:

$$
\begin{aligned}
& \frac{\partial f}{\partial t}=J \frac{\partial x}{\partial t} \\
& \begin{array}{l}
\qquad \\
\text { anion } \quad \\
\text { fame from the applying chain rule to the } c \\
f=x+C
\end{array} \\
& \qquad=L\left(\frac{\partial f}{\partial t}\right)^{\top}= \\
& L=L(z(w, x, b)), t)
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow\left(\frac{\partial f}{\partial t}\right)^{\top}=\left(\frac{\partial x}{\partial t}\right)^{\top} J^{\top} \\
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& f=x+C \quad J=I
\end{aligned}
$$

Backpropagation
The whole idea came from the applying chain rule to the computation graph of primitive operations

FORWARD PASS (COMPUTE LOSS) праммой nporog

All frameworks for automatic differentiation construct (implicitly or explicitly) computation graph. In deep learning we typically want to compute the derivatives of
the loss function L w.r.t. each intermediate parameters in order to tune them via gradient descent. For this purpose it is convenient to use the following notation:

$$
\overline{v_{i}}=\frac{\partial L}{\partial v_{i}}
$$

Let v_{1}, \ldots, v_{N} be a topological ordering of the computation graph (ie. parents come before children). v_{N} denotes the variable we're trying to compute derivatives of (e.g. loss).

Abmosum. great.:
Forward pass:

For $i=1, \ldots, N$:
Compute v_{i} as a function of its parents.
2. An na nogoreita npougboynew uenonb 3 yeats npabuno npougb.
Backward pass:

$$
\overline{v_{N}}=1
$$

For $i=N-1, \ldots, 1$:

$$
\text { Compute derivatives } \overline{v_{i}}=\sum_{j \in \operatorname{Children}\left(v_{i}\right)} \overline{v_{j}} \frac{\partial v_{j}}{\partial v_{i}}
$$

Note, that $\overline{v_{j}}$ term is coming from the children of $\overline{v_{i}}$, while $\frac{\partial v_{j}}{\partial v_{i}}$ is already precomputed effectively.
FORWART TO

$$
\text { BACKWADD } \quad 2 . T_{0}
$$

Forward pass
Backward pass
$z=w x+b$
$\overline{\mathcal{L}}=1$
$y=\sigma(z)$
$L=\frac{1}{2}(y-t)^{2}$
$\bar{R}=\overline{\mathcal{L}} \frac{d \mathcal{L}}{d R}=\overline{\mathcal{L}} \lambda$
$\bar{L}=\overline{\mathcal{L}} \frac{d \mathcal{L}}{d L}=\overline{\mathcal{L}}$
$\bar{z}=\bar{y} \frac{d y}{d z}=\bar{y} \sigma^{\prime}(z)$
$R=\frac{1}{2} w^{2}$
$\mathcal{L}=L+\lambda R$
$\bar{y}=\bar{L} \frac{d L}{d y}=\bar{L}(y-t)$
$\bar{w}=\bar{z} \frac{d z}{d w}+\bar{R} \frac{d R}{d w}=\bar{z} x+\bar{R} w$
$\bar{b}=\bar{z} \frac{d z}{d b}=\bar{z}$
$\bar{x}=\bar{z} \frac{d z}{d x}=\bar{z} w$

Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are already developed in effective manner in automatic differentiation frameworks.
Typically, we even do not construct or store the full Jacobian, doing matvec directly instead.

Example: element-wise exponent

$$
y=\exp (z) \quad J=\operatorname{diag}(\exp (z)) \quad \bar{z}=\bar{y} J
$$

See the examples of Vector-Jacobian Products from autodidact library:

lambda
lambda
lambda
lambda
lambda

Hessian vector product

Interesting, that the similar idea could be used to compute Hessian-vector products, which is essential for second order optimization or conjugate gradient methods. For a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with continuous second derivatives (so that the Hessian matrix is symmetric), the Hessian at a point $x \in \mathbb{R}^{n}$ is written as $\partial^{2} f(x)$. A Hessian-vector product function is then able to evaluate

$$
v \mapsto \partial^{2} f(x) \cdot v
$$

for any vector $v \in \mathbb{R}^{n}$.

The trick is not to instantiate the full Hessian matrix: if n is large, perhaps in the millions or billions in the context of neural networks, then that might be impossible to store. Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an efficient Hessian-vector product function. We just have to use the identity

$$
\partial^{2} f(x) v=\partial[x \mapsto \partial f(x) \cdot v]=\partial g(x),
$$

where $g(x)=\partial f(x) \cdot v$ is a new vector-valued function that dots the gradient of f at x with the vector v. Notice that we're only ever differentiating scalar-valued functions of vector-valued arguments, which is exactly where we know grad is efficient.

Code

ce Open in Colab

Autodidact - a pedagogical implementation of Autograd CSC321 Lecture 6
CSC321 Lecture 10
\qquad

$$
\begin{aligned}
& \text { ny you should understand backpropagation :) }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}\left(A_{m \times m}=\operatorname{tr}\left[\left(A^{\top}\right)^{\top} \cdot X\right] \cong\left\langle A^{\top}, X\right\rangle\right. \\
& \Rightarrow \quad \nabla \quad \underset{m \times n}{ }=A_{m^{*} n}^{\top} \quad \nabla f \\
& \operatorname{trf}(A X)=\langle I, A x\rangle \\
& d f=\langle I, d A x\rangle\rangle=\langle I, A d x\rangle= \\
& =\left\langle A^{\top}, d x\right\rangle
\end{aligned}
$$

