Methods = Automatic differentiation

ldea
,@-. Qn —Q

DIFFERENTIAT iON

v,c- ? e@ s%sz /\STABLE
’"_X_ 7 GQ SYMBoLIC AUTOMATIC
W|,WQ = ? \}‘k\zwﬁcq
"&V \XD LOW EAST
MuMERicAL MANWAL L
3 (ImPYACTICAL) b 20
L GJ-Q’Q‘ . WNSTABLE F\(A?\K/’-
ew. \ {:(Q\ o B(x+ +& AX

Automatic differentiation is a scheme, that allows you to compute a value of gradient of

function with a cost of computing function itself only twice.

Chainrule

We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule

w—+L — R

Suppose, we have the following functions R: R — R, L : R — Rand W & R. Then

OR OR 0L L(\ND
oW OL oW
Multivariate chain rule
The simplest example: {’ Xl ‘k\ \AFQ‘
] _ Of Bmy | Of 0z [Ty 1) 7
g /@82 0) = 5 Tt B o X/
Now, we'll consider f : R™® — R:
T
B —or 0w, or oe | of X
ot (xl(t)v'“awn(t)) _ oz, Ot .. F oz, Ot Vx d-b

But if we will add another dimension f : R™ — R™, than the j-th output of f will be:

— N

8f] ox; = Oz;
fﬂ(wl(Z dz; Ot _;Jﬁ(‘?—t’

where matrix J € R™*™ is the jacobian of the f. Hence, we could write it in a vector

way:
of _ ;o Of ' _(8z\
8t_J8t <:) (8t> _<8t>J
50 -P
Backpropagation LoxqC I = T

The whole idea came from the applying chain rule to the computation &\Ph of primitiv&ian
operations fé/@
L =L (y(2(w,z,b)),t) \

FORWARD PAGS (COMPUTE LOSS)

f

ngduea Moty

%Q\'\\'\b‘e/

—
\ o
W > 2WLH — =6 @ —[=34t

2w
/ //r ,’cﬁ ,%; ’%é :%%ZS- el
106 QQ%Q(LQ'L“
w@é e

s BACKWARD PASS (COMPUTE derivATVESgay

r\ Oq \/ : k—
0z 8z 0z >
4

Qs e °’wouq
'\-ﬂ W QW y=o0(z2) % =0'(2)

Nl oL _ _, 9L _,_
L ?.L—z(y t) Gy Y b Tt %(w)b f(

All frameworks for automatic differentiation construct (implicitly or explicitly)
computation graph. In deep learning we typically want to compute the derivatives of

the loss function L w.r.t. each intermediate parameters in order to tune them via
gradient descent. For this purpose it is convenient to use the following notation:

0L
v, = —
’ 3?),-
Letvq,...,vN be atopological ordering of the computation graph (i.e. parents come

before children). vy denotes the variable we're trying to compute derivatives of (e.g.

loss). A!)"\”J.lm gumq; .l

1 Crporea. Byurenuvensuy @
vad

Forward pass:

Fori=1,...,N: mWWT“ﬂm QP“QM- onepea
Compute v, as a function of its parents. ‘A A9 V\ogcm.m V\Pousﬁcxﬂw
WO Ab Yecs wpetbeer> npou
Backward pass:

CORWARD | NOAHOU &6<
vy =1 —_—>E, 2L
Fori=N—1,...,1: PACKWARD o™

a’Uj 3, B Quar c“‘é WA
Compute derivatives v, = > Vi 3@,,::&“ Posduso'\&ll"‘
j€Children(v;) 8 3, ReoP -
N ve (vif
Note, that Fj term is coming from the children of v;, while —J is already precomputed
effectively. FO@W AT ’\-o

OACLLWRDY Do

Univariate logistic least squares regression

N
z:wa:+

\

Forward pass

z=wzr+b
y=0(2)
1
L==(y—t)?
2(y t)
1
R:§w2
L=L+ AR

Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are
already developed in effective manner in automatic differentiation frameworks.
Typically, we even do not construct or store the full Jacobian, doing matvec directly g,
instead. 2 e

; —_—

Example: element-wise exponent 2Zn 2 2y

y = exp (2) J = diag(exp(2)) z=1yJ

See the examples of Vector-Jacobian Products from autodidact ljbrary:

drobuycttd WLLT
S (.
V3P

Hessian vector product

Interesting, that the similar idea could be used to compute Hessian-vector products,
which is essential for second order optimization or conjugate gradient methods. For a
scalar-valued function f : R™ — R with continuous second derivatives (so that the
Hessian matrix is symmetric), the Hessian at a point z € R" is written as 82f(x). A
Hessian-vector product function is then able to evaluate

v 0% f(z) - v
for any vector v € R™.

The trick is not to instantiate the full Hessian matrix: if n is large, perhaps in the millions
or billions in the context of neural networks, then that might be impossible to store.
Luckily, grad (in the jax/autograd/pytorch/tensorflow) already gives us a way to write an
efficient Hessian-vector product function. We just have to use the identity

0% f(z)v = Oz v 9f(z) - v] = 9g(z),

where g(z) = 0f(x) - v is a new vector-valued function that dots the gradient of f at
x with the vector v. Notice that we're only ever differentiating scalar-valued functions
of vector-valued arguments, which is exactly where we know grad is efficient.

hvp

Code

Materials _—

Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6

CSC321 Lecture 10 ‘t— .
Why you should understand backpropagation :)
: / =T
JAX autodiff cookbook d‘c A o /d X
- <ﬁ ,x7 = ': —)

¢F = —£ -

