B npegorgyagax cepusx
$x^{\top} A x-b^{\top} x+c$ 3A, $A 4 A$
$A \in \Phi_{+}^{\circ}$
$0<\mu<L$
$\nabla f(x)=A x-b ; \nabla^{2} f=A$
$f(x)$
-2
(1) Oоддиа erener

$\beta_{i j}=-\frac{u^{\top} A d_{j}}{d^{\top} A d_{j}} \quad j<i$
(2) Ocrobuste nemNGI

$$
e^{i}=\sum_{j=i}^{n-1}-\alpha^{j} d_{j}
$$

(ER) $\begin{gathered}\text { umpacs } \\ \text { us oumu } \\ \text { ous } k\end{gathered}$ выmтаetce bextop выmтaetes bekrop
$-\alpha^{j} \cdot d_{j}$

Пpogonxaem
(43) $r^{\top} \cdot(G S)$ фиксируен

$$
\begin{aligned}
& d_{i}=u_{i}+\sum_{j=0}^{i-1} \beta_{i j} d_{j} \\
& \left.r^{k T} d_{i}=r^{k^{T}} u^{i}+\sum_{j=0}^{i-1} \beta_{i j} r^{k^{T}} d_{j}\right)_{j<i}^{k} \\
& 0_{0}{ }^{\frac{\text { ungeke }}{i}}{ }_{n-1}^{n / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { nycto } k>i \quad(i<k) \Rightarrow \underbrace{r^{k^{\top}} \cdot d_{i}}_{0}=r^{k^{\top}} \cdot u^{i}+0 \\
& \text { HO } b C G \\
& u^{i}=r^{i} \Rightarrow r^{i^{\top} \cdot r^{k}=0,} r_{i<k}^{k^{T} \cdot u^{i}=0}
\end{aligned}
$$

Hebrajka \perp been npegs ggyyen rebogkaM

$$
\text { nyeds } k=i \quad r^{k^{\top}} \cdot d_{i}=r^{k^{\top}} \cdot u^{i}+0
$$

$$
r^{i^{\top}} d_{i}=r^{i^{\top} u^{i}}
$$

(4.4)

$$
\begin{gathered}
r^{i+1}=-A \cdot e^{i+1}=-A\left(e^{i}+\alpha^{i} d_{i}\right)=-A e^{i}-\alpha^{i} A d_{i}= \\
=r^{i}-\alpha^{i} A d_{i}
\end{gathered}
$$

Tenepo paccurompure kо $\rightarrow \phi \phi$ иуеe ker $\beta_{i j}$ b (GS)

$$
\begin{array}{rlr}
\beta_{i j} & =-\frac{u_{i}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}= & \begin{aligned}
c \text { arrae } \\
u_{i}=r^{i}
\end{aligned} \\
& =-\frac{j<l}{r_{i}^{\top} A d_{j}} & j<i
\end{array}
$$

Orazalartca $\beta_{i j}$ norte bcerga 0 , краиe alyicel cocegnux Dea srao paccerompule:

$$
\begin{aligned}
\left\langle r^{i}, r^{j+1}\right\rangle & =\left\langle r^{i}, r^{j}-\alpha^{j} \cdot A d_{j}\right\rangle=\left\langle r^{i}, r^{j}\right\rangle-\alpha^{j}\left\langle r^{i}, A d_{j}\right\rangle \\
\Rightarrow & \rangle \alpha^{j}\left\langle r^{i}, A d_{j}\right\rangle=\left\langle r^{i}, r^{j}\right\rangle-\left\langle r^{i}, r^{j+1}\right\rangle
\end{aligned}
$$

eam $i=j \alpha^{j}\left\langle r^{i}, A d_{j}\right\rangle=\left\langle r^{i}, r^{i}\right\rangle-\left\langle r^{i}, r^{i+1}\right\rangle 0$ eale $\begin{aligned} & i=j+1 \\ & j=i-1\end{aligned}$ unu $^{j}\left\langle r^{i}, A d_{j}\right\rangle=\left\langle r^{i} r^{i}\right\rangle-\left\langle r^{i}, r^{i}\right\rangle$
uHare

$$
\left\langle r^{i}, A d_{j}\right\rangle=0
$$

Bcrosuraler, vo $j<i$. Donyracel
eam $j=i-1$

$$
\begin{aligned}
& \beta_{i j}=-\frac{r_{i}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}=-\frac{1}{\alpha^{j}} \cdot \frac{-\left\langle r^{i} r^{i}\right\rangle}{d_{j}^{\top} A d_{j}}= \\
= & \frac{\left\langle d_{i-1}, A d_{i-1}\right\rangle}{} \cdot \frac{\left\langle r^{i}, r^{i}\right\rangle}{\left\langle d_{i-1}, r^{i-1}\right\rangle\left\langle d_{i-1}, A d_{i-1}\right.}=\frac{\left\langle r^{i}, r^{i}\right\rangle}{\left\langle r^{i-1}, r^{i-1}\right\rangle}
\end{aligned}
$$

UHALE 0 .
Anropumes
Bozpagyeuca
ееть x_{0} 1. $d_{0}=r_{0}=b-A x_{0}$. H.Y.
2. FOR $i=0$,

CG.
3. $\quad \alpha_{i}=\frac{r_{i}^{\top} r_{i}}{d_{i}^{\top} A d_{i}}$ mar AUH.
4. $x_{i+1}=x_{i}+\alpha_{i} d_{i}$ gbuхeние b
5. $r_{i+1}=r_{i}-\alpha_{i} A_{i}$ odr. нebazky
$\left.\begin{array}{ll}\text { 6. } & \beta_{i+1}=\frac{r_{i+1}^{\top} r_{i+1}}{r_{i}^{\top} r_{i}} \\ \text { 7. } & d_{i+1}=r_{i+1}+\beta_{i+1} d_{i}\end{array}\right\} G S$

exoguica tort申 za m uтepayún, lge m - meno pazuntsis codiberiner mucen

B peantioctu

$$
\begin{aligned}
& \left\|l_{K}\right\|_{A} \leqslant 2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)^{K}\left\|l_{0}\right\|_{A} \\
& x=\|A\| \cdot\left\|A^{-1}\right\|=\frac{\sigma_{\text {Max }}}{\sigma_{\text {min }}}=\frac{\lambda_{\text {Max }}}{\lambda_{\text {min }}}=\frac{L}{\mu}
\end{aligned}
$$

Newton method

Intuition

Newton's method to find the equation' roots
Consider the function $\varphi(x): \mathbb{R} \rightarrow \mathbb{R}$. Let there be equation $\varphi\left(x^{*}\right)=0$. Consider a linear approximation of the function $\varphi(x)$ near the solution $\left(x^{*}-x=\Delta x\right)$:

$$
\varphi\left(x^{*}\right)=\varphi(x+\Delta x) \approx \varphi(x)+\varphi^{\prime}(x) \Delta x
$$

We get an approximate equation:

$$
\varphi(x)+\varphi^{\prime}(x) \Delta x=0
$$

We can assume that the solution to equation $\Delta x=-\frac{\varphi(x)}{\varphi^{\prime}(x)}$ will be close to the optimal $\Delta x^{*}=$ $x^{*}-x$.

We get an iterative scheme:

This reasoning can be applied to the unconditional minimization task of the $f(x)$ function by writing down the necessary extremum condition:

$$
f^{\prime}\left(x^{*}\right)=0 \quad x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime \prime}\left(x^{k}\right)}=\nabla f\left(x^{k}\right)
$$

Here $\varphi(x)=f^{\prime}(x) \quad \varphi^{\prime}(x)=f^{\prime \prime}(x)$. Thus, we get the Newton optimization method in its classic form:

$$
x_{k+1}=x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right) .
$$

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{\top A} x-\sqrt{x} \\
& f(x)=A x-A^{-1} \quad x=A^{-1}
\end{aligned}
$$

With the only clarification that in the multidimensional case: $x \in \mathbb{R}^{n}, f^{\prime}(x)=\nabla f(x) \in$ $\mathbb{R}^{n}, f^{\prime \prime}(x)=\nabla^{2} f(x) \in \mathbb{R}^{n \times n} . \quad f_{x^{2}}^{\mathbb{L}}(x)=f\left(x^{k}\right)+\left(\nabla f\left(x^{k}\right), x-x^{k}\right)+\frac{1}{2}\left\langle x-x^{k}, \nabla^{2} f\left(x^{k}\right)\left(x-x^{k}\right)\right\rangle$

Second order Taylor approximation of the function

Let us now give us the function $f(x)$ and a certain point x_{k}. Let us consider the square approximation of this function near x_{k} :

$$
\tilde{f}(x)=f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle .
$$

The idea of the method is to find the point x_{k+1}, that minimizes the function $\tilde{f}(x)$, ie. $\nabla \tilde{f}\left(x_{k+1}\right)=0$.

$$
\begin{aligned}
\nabla \tilde{f}\left(x_{k+1}\right) & =f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)=0 \\
f^{\prime \prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right) & =-f^{\prime}\left(x_{k}\right) \\
{\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime \prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right) } & =-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right) \\
x_{k+1} & =x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right) .
\end{aligned}
$$

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for the method to exist), as well as its positive definiteness (for the convergence guarantee).

Quadratic approximation and Newton step (in green) for varying starting points (in red). Note that when the starting point is far from the global minimizer (in 0), the Newton step totally overshoots the global minimizer. Picture was taken from the post.

Convergence

Let's try to get an estimate of how quickly the classical Newton method converges. We will try to enter the necessary data and constants as needed in the conclusion (to illustrate the methodology of obtaining such estimates).

$$
\begin{aligned}
& x_{k+1} \|_{x^{*}=x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1}\left(f^{\prime}\left(x_{k}\right)-x^{*}=x_{k}-x^{*}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} J^{\prime}\left(x_{k}\right)=\right.} \\
& =x_{k}-x^{*}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} \int_{0}^{1} f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d \tau= \\
& =\left(1-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} \int_{0}^{1} f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\left(x_{k}-x^{*}\right)= \\
& =\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1}\left(f^{\prime \prime}\left(x_{k}\right)-\int_{0}^{1} f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\left(x_{k}-x^{*}\right)= \\
& =\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1}\left(\int_{0}^{1}\left(f^{\prime \prime}\left(x_{k}\right)-f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\right)\left(x_{k}-x^{*}\right)= \\
& =\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} G_{k}\left(x_{k}-x^{*}\right)
\end{aligned}
$$

Used here is: $G_{k}=\int_{0}^{1}\left(f^{\prime \prime}\left(x_{k}\right)-f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)$. Let's try to estimate the size of G_{k} :

$$
\begin{array}{r}
\left\|G_{k}\right\|=\left\|\int_{0}^{1}\left(f^{\prime \prime}\left(x_{k}\right)-f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right) d \tau\right)\right\| \leq \\
\leq \int_{0}^{1}\left\|f^{\prime \prime}\left(x_{k}\right)-f^{\prime \prime}\left(x^{*}+\tau\left(x_{k}-x^{*}\right)\right)\right\| d \tau \leq \quad(\text { Hessian's Lipschitz continuity }) \\
\leq \int_{0}^{1} M\left\|x_{k}-x^{*}-\tau\left(x_{k}-x^{*}\right)\right\| d \tau=\int_{0}^{1} M\left\|x_{k}-x^{*}\right\|(1-\tau) d \tau=\frac{r_{k}}{2} M
\end{array}
$$

where $r_{k}=\left\|x_{k}-x^{*}\right\|$.
So, we have:
$r_{k+1} \leq\left\|\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1}\right\| \cdot \frac{r_{k}}{2} M \cdot r_{k}$
Quadratic convergence already smells. All that remains is to estimate the value of Hessian's reverse. Because of Hessian's Lipschitz continuity and symmetry:

$$
\begin{array}{r}
f^{\prime \prime}\left(x_{k}\right)-f^{\prime \prime}\left(x^{*}\right) \succeq-M r_{k} I_{n} \\
f^{\prime \prime}\left(x_{k}\right) \succeq f^{\prime \prime}\left(x^{*}\right)-M r_{k} I_{n} \\
f^{\prime \prime}\left(x_{k}\right) \succeq l I_{n}-M r_{k} I_{n} \\
f^{\prime \prime}\left(x_{k}\right) \succeq\left(l-M r_{k}\right) I_{n}
\end{array}
$$

So, (here we should already limit the necessity of being $f^{\prime \prime}\left(x_{k}\right) \succ 0$ for such estimations, i.e. $r_{k}<$ $\left.\frac{l}{M}\right)$.

$$
\left\|\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1}\right\| \leq\left(l-M r_{k}\right)^{-1}
$$

$r_{k+1} \leq \frac{r_{k}^{2} M}{2\left(l-M r_{k}\right)}$

The convergence condition $r_{k+1}<r_{k}$ imposes additional conditions on $r_{k}: \quad r_{k}<\frac{2 l}{3 M}$
Thus, we have an important result: Newton's method for the function with Lipschitz positive Hessian converges squarely near $\left(\left\|x_{0}-x^{*}\right\|<\frac{2}{3 M}\right.$) to the solution with quadratic speed.

Theorem

Let $f(x)$ be a strongly convex twice continuously differentiated function at \mathbb{R}^{n}, for the second derivative of which inequalities are executed: $l I_{n} \preceq f^{\prime \prime}(x) \preceq L I_{n}$. Then Newton's method with a constant step locally converges to solving the problem with super linear speed. If, in addition, Hessian is Lipschitz continuous, then this method converges locally to x^{*} with a quadratic speed.

Summary

It's nice:

- quadratic convergence near the solution x^{*}
- affinity invariance
- the parameters have little effect on the convergence rate

It's not nice:

- it is necessary to store the hessian on each iteration: $\mathcal{O}\left(n^{2}\right)$ memory
- it is necessary to solve linear systems: $\mathcal{O}\left(n^{3}\right)$ operations
- the Hessian can be degenerate at x^{*}
- the hessian may not be positively determined \rightarrow direction $-\left(f^{\prime \prime}(x)\right)^{-1} f^{\prime}(x)$ may not be a descending direction

Possible directions

- Newton's damped method (adaptive stepsize)
- Quasi-Newton methods (we don't calculate the Hessian, we build its estimate - BFGS)
- Quadratic evaluation of the function by the first order oracle (superlinear convergence)
- The combination of the Newton method and the gradient descent (interesting direction)
- Higher order methods (most likely useless)

Materials

- Going beyond least-squares - I : self-concordant analysis of Newton method
- Going beyond least-squares - II : Self-concordant analysis for logistic regression
- About global damped Newton convergence issue I
- About global damped Newton convergence issue II Open in Colab

Code

Open in Colab

Quasi Newton methods

Intuition

For the classic task of unconditional optimization $f(x) \rightarrow \min _{x \in \mathbb{R}^{n}}$ the general scheme of iteration method is written as:

$$
x_{k+1}=x_{k}+\alpha_{k} s_{k}
$$

In the Newton method, the s_{k} direction (Newton's direction) is set by the linear system solution at each step:

$$
s_{k}=-B_{k} \nabla f\left(x_{k}\right), \quad B_{k}=f_{x x}^{-1}\left(x_{k}\right)
$$

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of $B_{k}=I_{n}$ as B_{k} at each step, we will exactly get the gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the B_{k} matrix so that it tends in some sense at $k \rightarrow \infty$ to the true value of inverted Hessian in the local optimum $f_{x x}^{-1}\left(x_{*}\right)$. Let's consider several schemes using iterative updating of \$B_k\$ matrix in the following way:

$$
B_{k+1}=B_{k}+\Delta B_{k}
$$

Then if we use Taylor's approximation for the first order gradient, we get it:

$$
\nabla f\left(x_{k}\right)-\nabla f\left(x_{k+1}\right) \approx f_{x x}\left(x_{k+1}\right)\left(x_{k}-x_{k+1}\right)
$$

Now let's formulate our method as:

$$
\Delta x_{k}=B_{k+1} \Delta y_{k}, \text { where } y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

in case you set the task of finding an update \$\Delta B_k\$:

$$
\Delta B_{k} \Delta y_{k}=\Delta x_{k}-B_{k} \Delta y_{k}
$$

Broyden method

The simplest option is when the amendment \$\Delta B_k\$ has a rank equal to one. Then you can look for an amendment in the form

$$
\Delta B_{k}=\mu_{k} q_{k} q_{k}^{\top}
$$

where $\$ \backslash m u _k \$$ is a scalar and $\$ q _k \$$ is a non-zero vector. Then mark the right side of the equation to find \$\Delta B_k\$ for \$\Delta z_k\$:

$$
\Delta z_{k}=\Delta x_{k}-B_{k} \Delta y_{k}
$$

We get it:

$$
\begin{gathered}
\mu_{k} q_{k} q_{k}^{\top} \Delta y_{k}=\Delta z_{k} \\
\left(\mu_{k} \cdot q_{k}^{\top} \Delta y_{k}\right) q_{k}=\Delta z_{k}
\end{gathered}
$$

A possible solution is: \$q_k = \Delta z_k\$, \$\mu_k = \left(q_k^\top \Delta y_klright)^\{-1\}\$.

Then an iterative amendment to Hessian's evaluation at each iteration:

$$
\Delta B_{k}=\frac{\left(\Delta x_{k}-B_{k} \Delta y_{k}\right)\left(\Delta x_{k}-B_{k} \Delta y_{k}\right)^{\top}}{\left\langle\Delta x_{k}-B_{k} \Delta y_{k}, \Delta y_{k}\right\rangle} .
$$

Davidon-Fletcher-Powell method

$$
\begin{aligned}
& \Delta B_{k}=\mu_{1} \Delta x_{k}\left(\Delta x_{k}\right)^{\top}+\mu_{2} B_{k} \Delta y_{k}\left(B_{k} \Delta y_{k}\right)^{\top} . \\
& \Delta B_{k}=\frac{\left(\Delta x_{k}\right)\left(\Delta x_{k}\right)^{\top}}{\left\langle\Delta x_{k}, \Delta y_{k}\right\rangle}-\frac{\left(B_{k} \Delta y_{k}\right)\left(B_{k} \Delta y_{k}\right)^{\top}}{\left\langle B_{k} \Delta y_{k}, \Delta y_{k}\right\rangle} .
\end{aligned}
$$

Broyden-Fletcher-Goldfarb-Shanno method

$$
\begin{gathered}
\Delta B_{k}=Q U Q^{\top}, \quad Q=\left[q_{1}, q_{2}\right], \quad q_{1}, q_{2} \in \mathbb{R}^{n}, \quad U=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) . \\
\Delta B_{k}=\frac{\left(\Delta x_{k}\right)\left(\Delta x_{k}\right)^{\top}}{\left\langle\Delta x_{k}, \Delta y_{k}\right\rangle}-\frac{\left(B_{k} \Delta y_{k}\right)\left(B_{k} \Delta y_{k}\right)^{\top}}{\left\langle B_{k} \Delta y_{k}, \Delta y_{k}\right\rangle}+p_{k} p_{k}^{\top}
\end{gathered}
$$

Code

- Open in Colab
- Comparison of quasi Newton methods

