
3AIA AUA

Bupegolgyoax cepuaxbix+21- min AtDi
xER"

-x

Ax- b;A
f(x) -

① Odoznazenwa
*
Ab=

b-Ax

dAd,=
(6S nY5

B6IXOg↳ ->
nMH3 1A

di =Ui+ Bisd; (6s)U. ...Un- dodn-1

Bij
=
=A; j<

② Ocrobnoie NeMM6l HE Kago

3 umepayul=- did;(ER U30NUSKU

j =j B6/LuaT GEKTOP
- 2i.d;

d!.=0, i<k (R) Hebagkent
been pegangyuyah

nampal neunam metoga

Mpogonaem 4.3 rk?(CS) pukeupyeu
ungeke

di =Ui+ Bisd;
~di =ru +pisred; !j<i

· n N X

0 - I n-1

Mi(ick) =rkdi =r*4"+0
-

H0826
!
=> rkn=0
nee

vi =vi
=

riTr* =
0, ick

Hebayka
1
beam upegriggngum rebagkah

k-irdi=ru" to rid:=ri

4.4 rite=-A.eits=-Ase"+ cid!) =-Ae"-sAd:=
-

ri_CAdi

Teneps pazakomphn kozppoquertaBijb(63)
6 alyral

Bij
=
=A= C6

Ui =ri

--iTAd; j<
d.Adi

oragalacian isnot beega O,kpore angael logn
Drazrao parakompal:

sirstes= (r", ri_Ad;=r;ri-dir;Ad:
=>j< ri,Ad;=(r",ris-ri,wit

earl i =j [Cr;,Ad; =(r:, vi)Fiomean

eare i =5+1
8

i =i -14n<r:,Ad;L =Lrs- r,wi
neare

unac <r", Ad, =0

nee

Benowadhu, io; <i. Mongal ewl

j =i- 1

riTAd;
Bij =-

d.A di -----re -

-Sdin, Adic. (w", wie
= cri, vic

↳din, with die, Adie Jr, fits

UHAZ O. Bozpaggech
Anropumu
Xo

1. do = v =b-Axo. H.Y.

2. FOR I =0,
mar AUH.

26. 3. 2i =End: d:
mouck

4. Xit =xi+2: di gbuvence b

5. Vite=4-diAd. odn. Hebazky
6. Bits -it 3C7. dirViet Bits di

exogmhocit:buganononapuomettke
exognize toto ze

m utepagni,

Ige m-zcau pazultax
codebene seen

↑VININ 1. . . 14K I -6
Xmin ↓max R

B

pealsrocutepagnoliain 1NXIA =xAX

Hall 2)*CollA
x =HAllHAl ==

Newton method

Intuition

Newton's method to find the equation' roots
Consider the function . Let there be equation . Consider a linear
approximation of the function near the solution ():

We get an approximate equation:

We can assume that the solution to equation will be close to the optimal

.

We get an iterative scheme:

This reasoning can be applied to the unconditional minimization task of the function by writing
down the necessary extremum condition:

φ(x) : R → R φ(x) =∗ 0
φ(x) x −∗ x = Δx

φ(x) =∗ φ(x + Δx) ≈ φ(x) + φ (x)Δx.′

φ(x) + φ (x)Δx =′ 0

Δx = −

φ (x)′

φ(x)
Δx =∗

x −∗ x

x =k+1 x −k .
φ (x)′

k

φ(x)k

f(x)

f (x) =′ ∗ 0

f(x) =0

Y(x) =f(x) =c
G'(x) =f(x)

fYx7 = ***
a
tg2 =f(x)

·

is
↳

x*x*=fa

Here . Thus, we get the Newton optimization method in its classic
form:

With the only clarification that in the multidimensional case:
.

Second order Taylor approximation of the function
Let us now give us the function and a certain point . Let us consider the square
approximation of this function near :

The idea of the method is to find the point , that minimizes the function , i.e.
.

x

f(x)
f(x)

xk xk+1 xk+2

+1

φ(x) = f (x) φ (x) =′ ′ f (x)′′

x =k+1 x −k f (x) f (x).[′′
k]−1 ′

k (Newton)

x ∈ R , f (x) =n ′ ∇f(x) ∈
R , f (x) =n ′′ ∇ f(x) ∈2 Rn×n

f(x) x k

x k

 (x) =f
~

f(x) +k ⟨f (x),x −′
k x ⟩ +k ⟨f (x)(x −

2
1 ′′

k x),x −k x ⟩.k

x k+1 (x)f
~

∇ (x) =f
~

k+1 0

∇ (x)f
~

k+1

f (x)(x − x)′′
k k+1 k

f (x) f (x)(x − x)[′′
k]−1 ′′

k k+1 k

xk+1

= f (x) + f (x)(x − x) = 0′
k

′′
k k+1 k

= −f (x)′
k

= − f (x) f (x)[′′
k]−1 ′

k

= x − f (x) f (x).k [′′
k]−1 ′

k

f=x-=A

f(x) =f(xY) +(f(x),x - x4)+cx- x, f(x*(x-x4)

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for
the method to exist), as well as its positive definiteness (for the convergence guarantee).

Quadratic approximation and Newton step (in green) for varying starting points (in red). Note that
when the starting point is far from the global minimizer (in 0), the Newton step totally overshoots the
global minimizer. Picture was taken from the post.

Convergence
Let's try to get an estimate of how quickly the classical Newton method converges. We will try to
enter the necessary data and constants as needed in the conclusion (to illustrate the methodology of
obtaining such estimates).

1 1

Used here is: . Let's try to estimate the size of :

where .

So, we have:

Quadratic convergence already smells. All that remains is to estimate the value of Hessian's reverse.

Because of Hessian's Lipschitz continuity and symmetry:

So, (here we should already limit the necessity of being for such estimations, i.e.
).

x − x = x − f (x) f (x) − x = x − x − f (x) f (x) =k+1
∗

k [′′
k]−1 ′

k
∗

k
∗ [′′

k]−1 ′
k

= x − x − f (x) f (x + τ(x − x))(x − x)dτ =k
∗ [′′

k]−1 ∫
0

1
′′ ∗

k
∗

k
∗

= 1 − f (x) f (x + τ(x − x))dτ (x − x) =([′′
k]−1 ∫

0

1
′′ ∗

k
∗) k

∗

= f (x) f (x) − f (x + τ(x − x))dτ (x − x) =[′′
k]−1 (′′

k ∫
0

1
′′ ∗

k
∗) k

∗

= f (x) f (x) − f (x + τ(x − x))dτ (x − x) =[′′
k]−1 (∫

0

1

(′′
k

′′ ∗
k

∗)) k
∗

= f (x) G (x − x)[′′
k]−1

k k
∗

G =k f (x) − f (x + τ(x − x))dτ∫0
1 (′′

k
′′ ∗

k
∗) G k

∥G ∥ = f (x) − f (x + τ(x − x))dτ ≤k

∥

∥∫
0

1

(′′
k

′′ ∗
k

∗)
∥

∥

≤ f (x) − f (x + τ(x − x)) dτ ≤ (Hessian’s Lipschitz continuity)∫
0

1

∥ ′′
k

′′ ∗
k

∗ ∥

≤ M∥x − x − τ(x − x)∥dτ = M∥x − x ∥(1 − τ)dτ = M ,∫
0

1

k
∗

k
∗ ∫

0

1

k
∗

2
r k

r =k ∥x −k x ∥∗

r ≤k+1 f (x) ⋅
∥
∥[′′

k]−1

∥
∥

 M ⋅2
r k r k

f (x) − f (x) ⪰ −Mr I′′
k

′′ ∗
k n

f (x) ⪰ f (x) − Mr I′′
k

′′ ∗
k n

f (x) ⪰ lI − Mr I′′
k n k n

f (x) ⪰ (l − Mr)I′′
k k n

f (x) ≻′′
k 0 r <k

M
l

 f (x) ≤ (l − Mr)
∥
∥[′′

k]−1

∥
∥

k
−1

r ≤k+1

2(l − Mr)k

r Mk
2

11f"x)- f"(y)1) =M. 11X-y1)

The convergence condition imposes additional conditions on

Thus, we have an important result: Newton's method for the function with Lipschitz positive Hessian
converges squarely near () to the solution with quadratic speed.

Theorem
Let be a strongly convex twice continuously differentiated function at , for the second
derivative of which inequalities are executed: . Then Newton's method with a
constant step locally converges to solving the problem with super linear speed. If, in addition,
Hessian is Lipschitz continuous, then this method converges locally to with a quadratic speed.

Summary
It's nice:

quadratic convergence near the solution
affinity invariance
the parameters have little effect on the convergence rate

It's not nice:

it is necessary to store the hessian on each iteration: memory
it is necessary to solve linear systems: operations
the Hessian can be degenerate at
the hessian may not be positively determined direction may not be a
descending direction

Possible directions
Newton's damped method (adaptive stepsize)
Quasi-Newton methods (we don't calculate the Hessian, we build its estimate - BFGS)
Quadratic evaluation of the function by the first order oracle (superlinear convergence)
The combination of the Newton method and the gradient descent (interesting direction)
Higher order methods (most likely useless)

Materials
Going beyond least-squares – I : self-concordant analysis of Newton method
Going beyond least-squares – II : Self-concordant analysis for logistic regression
About global damped Newton convergence issue I
About global damped Newton convergence issue II Open in Colab

r <k+1 r k r :k r <k 3M
2l

∥x −0 x ∥ <∗
 3M

2l

f(x) Rn

lI ⪯n f (x) ⪯′′ LI n

x∗

x∗

O(n)2

O(n)3

x∗

→ −(f (x)) f (x)′′ −1 ′

M

Code
Open in Colab

Quasi Newton methods

Intuition
For the classic task of unconditional optimization the general scheme of iteration

method is written as:

In the Newton method, the direction (Newton's direction) is set by the linear system solution at
each step:

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of as at each step, we will exactly get the
gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the matrix so that it
tends in some sense at to the true value of inverted Hessian in the local optimum .
Let's consider several schemes using iterative updating of B_k matrix in the following way:

Then if we use Taylor's approximation for the first order gradient, we get it:

Now let's formulate our method as:

in case you set the task of finding an update ΔB_k:

Broyden method

f(x) →

x∈Rn
min

x =k+1 x +k α s k k

s k

s =k −B ∇f(x), B =k k k f (x)xx
−1

k

B =k I n B k

B k

k → ∞ f (x)xx
−1

∗

B =k+1 B +k ΔB k

∇f(x) −k ∇f(x) ≈k+1 f (x)(x −xx k+1 k x).k+1

Δx =k B Δy , where y =k+1 k k ∇f(x) −k+1 ∇f(x)k

ΔB Δy =k k Δx −k B Δy k k

The simplest option is when the amendment ΔB_k has a rank equal to one. Then you can
look for an amendment in the form

where μ_k is a scalar and q_k is a non-zero vector. Then mark the right side of the equation
to find ΔB_k for Δz_k:

We get it:

A possible solution is: $q_k = \Delta z_k$, $\mu_k = \left(q_k^\top \Delta y_k\right)^{-1}$.

Then an iterative amendment to Hessian's evaluation at each iteration:

Davidon–Fletcher–Powell method

Broyden–Fletcher–Goldfarb–Shanno method

Code
Open in Colab
Comparison of quasi Newton methods

ΔB =k μ q q .k k k
⊤

Δz =k Δx −k B Δy k k

μ q q Δy =k k k
⊤

k Δz k

μ ⋅ q Δy q =(k k
⊤

k) k Δz k

ΔB =k .
⟨Δx − B Δy , Δy ⟩k k k k

(Δx − B Δy)(Δx − B Δy)k k k k k k
⊤

ΔB =k μ Δx (Δx) +1 k k
⊤ μ B Δy (B Δy) .2 k k k k

⊤

ΔB =k −
⟨Δx , Δy ⟩k k

(Δx)(Δx)k k
⊤

 .
⟨B Δy , Δy ⟩k k k

(B Δy)(B Δy)k k k k
⊤

ΔB =k QUQ , Q =⊤ [q , q], q , q ∈1 2 1 2 R , U =n
 .(a
c

c

b
)

ΔB =k −
⟨Δx , Δy ⟩k k

(Δx)(Δx)k k
⊤

 +
⟨B Δy , Δy ⟩k k k

(B Δy)(B Δy)k k k k
⊤

p p .k k
⊤

