SAL; ALA

B V\QQPAB(%%W CQPuaK ;LXTAX - bTx+ C — mw " Ae_‘[’

- —a xc © o< el
o0 - Acb ;o5 <A S

® 05obua~muua f" = - V‘F(xj= b-Ax“ = A.-'b
el x- X oo Lyol, > oo Acl=0
(65> " ::;% — ::\‘tx‘?u it 6s)

Wo .- U g do...-o\H db = WU, * Z Piid.\' (

4=0
s uf Ad; J¢ L
F;j B d}"Ao(.;
@ Owo@uble_ A2 MM6) e HeL kaxgod

2'=5 - dd; | (&R e

Bb{wTaeTes. SexTep

3= 1 —qid.
T K _ : neBages | Beesr npeget qyuguin
0" r~=o0 ,L4K (R copab amessh |
T
Mpogonxaes VK.(G) BUK Pyl
@ G S, wHgexe
k
d,', = U+ Zﬁiida
i=o " 1_
i L= "
ro; = AU+ 7 (&Sr J.;
}y=O . .
! J £LL
‘\:-_\“ S
o 3L nAd

e K20 (<9 =3 Ty - Tyl
AT I —

"
o] r
HO g CG6 => pk.ut zo
:> .T AT S N e
= r rir=o| 6 i<w
nebsgke | ean NPEgHt g e welog ke
. + T T iT
V\\dC!b K:L Vk‘ di - Y.lt'ul. + 0 rt di:ru

@ riﬂ:_A.eiﬂ’=-A(Zi+o(i0(i>=-A€i-liAdl=

= vio s
Tenepo POLLEHOMPULIL KO I Gp Uyl KKt (2,53 4 (GS)
o U:Aolq ~ ¢ uﬂ%z;ze,
Pii~ ATAd; ="
LY F J<L
47 A d;
Omya.wca [5 nouu 6&\3& 5 zpo.Aa u..‘_'m_,,@ c_omaawx

giaatmoPu_cMOvvywu
g | L
<rivdts orl rh Pady> =<rirts - £erd B>

=>JJ< r;)AO'J> = (r‘) r\"> - 4"‘) rj+'>

HEPE SR Y [S S AN B &
o i=5 g Rd> =<rirts - L 7
oL o=+t o .y

T LR 49/?0'”)"5

wHaR ¢<r,hd;> =0
Bcroaumaest | w0 j <1, Noagrerant P
. . 3= -
&B:‘ r‘:Ad‘; :_’l__-<_r:r‘_‘>__
d A d; L d; Ad;
.. Nel, bopni :
e P> et s gty

< di*l) ri-’ > <d|’_-l, A’C’i_'> (ri’_" ri">

A !\roeu‘:v«ihu ° | gob?dgwca'

e Xo 4 do=rp=b-Ax,. WY
2. or 1| = 0) e
Ty U.
, 2, di = OV war AU
CG; AT ok dé NO UCk
4. Xieg = X0t o C’J %BUJ:QHU.(8
R Y A Tt e
-_ Y.Vfl rb|
@- %L*L_ ——Y_':T) GS
~ d'm = V™ Puﬂji

Q\Cct’dqu% . @) ugz&AbHo& uncDm’ruﬁe)
Croguits, TOEUD He ™ Urepea,
'\,%, AR VNN |\ ngwa Ccéd@mev MEA
i—l—&i&H*—\—‘—‘—\-‘-‘—\-\WH
0 X«.‘m W R
D puikio
o W0 Wil \D(l/,‘,r = ¥ Ax

Wy W

2], < :L(“’“ ‘>K 1.

A
L

e

(x «1
<1

2 MY = G o 2 -

(\

Newton method

Intuition

Newton's method to find the equation' roots

Consider the function ¢(z) : R — R. Let there be equation ¢(z*) = 0. Consider a linear
approximation of the function gp(w) near the solution (z* — x = Ax):

p(z*) = oz + Az) ~ p(z) + ¢/ () Ac.
We get an approximate equation:
p(z) +¢'(z)Az =0

()
* ¢ ()

We ;et -an iterative scheme: g (X.B O
Thil = Th — So(xk). Lp(\b g(QT

¢’ (zr) \ 3 \y)
6) o) = %1
r by - fix)

will be close to the optimal Az* =

We can assume that the solution to equation Az = —

A
(X> - X"“L XK slope=f" (xn)-__\}

This reasoning can be applied to the unconditional minimization task of the f(n by wyiting
down the necessary extremum condition: (X"\ = O A

ooay)(—X
fi(z*) =0 X/X>

Here p(z) = f'(z) ¢'(x) = f"(x). Thus, we get the Newton optimization method |n |ts C|aSSIC

form: ?(X) = '-X p\ b

Tkl = Tk — [f”(mk)]fl f'(zk). ’K’(") P'x’ Newton

With the only clarification that in the multldlmen5|onal case: ¢ € R", f’
R", f"(z) = V?f(z) € R (x\ 1) ¢ @560 yx- x)+ 3¢ x X V'%‘)(x-x“ﬁ
Second order Taylor apprOX|mat|on of the function

Let us now give us the function f(a:) and a certain point xj. Let us consider the square
approximation of this function near x:

~

f(x) = fzr) + (f' (z2), z — x1) + %<f”($k)(33 — Zy), T — Tp)-

The idea of the method is to find the point 1, that minimizes the function f(:c), i.e.
Vf(zg+1) = 0.

%)

f(x)

f(xk+1)

XV

X Xkr1 Xiro

Vf(wkﬂ) = f,(xk) + fll(wk)(wk+1 - l‘k) =0
" (z) (zps1 — z) = —f'(zr)
()] (@) (znn — ax) = = [F"(zn)] " (2)
Tpin = — [(2x)] L F (k)

Let us immediately note the limitations related to the necessity of the Hessian's non-degeneracy (for
the method to exist), as well as its positive definiteness (for the convergence guarantee).

T T T

—f(x) p
9 | .
—quadratic approx.

-1
4 -2 0 2 4

Quadratic approximation and Newton step (in green) for varying starting points (in red). Note that
when the starting point is far from the global minimizer (in 0), the Newton step totally overshoots the
global minimizer. Picture was taken from the post.

Convergence

Let's try to get an estimate of how quickly the classical Newton method converges. We will try to
enter the necessary data and constants as needed in the conclusion (to illustrate the methodology of
obtaining such estimates).

w \\,g(ﬂ’- S’g\’f%)ll £ W\- l\x»‘-&

fl(zy) —x* =z —2* —

—ap— 2 — [()] /f”a: b r(o — %) (@, — o)dr =
(1_ /f”(x +T(xk—w))d7) (o — 2%) =
— 1) (£ () / a4 rlon - a))dr) (01— ") =

e
=@ ([70 - £+ -2 (o - 27) =
= [f"(@)] Gulax — ")

Used here is: G, = fol (f"(zx) — f"(z* + 7(xx — x*))dT). Let's try to estimate the size of Gi:

1G]l = ‘ /0 (f"(@r) = f"(&" + 7(@p — 27))dr)

1
< / Nf" (zx) — (2" + 7(xp — z¥))| dT < (Hessian’s Lipschitz continuity)
0
1 . .
< [Ml —o — r(ai —a)ar = [Mo~ a1~ r)ir = G,
0 0

where 7, = ||z, — z¥||.
So, we have:
mon < |7 @) |- g M

Quadratic convergence already smells. All that remains is to estimate the value of Hessian's reverse.

Because of Hessian's Lipschitz continuity and symmetry:

f(zr) — (") = —Mri I,
() = f'(z*) — MriI,
f"(:ck) t lIn — Mrk-[n
f"(:z:k) t (l — M’I‘k)In

So, (here we should already limit the necessity of being f” () > 0 for such estimations, i.e. 7, <

|1 @ < - mmy

The convergence condition 7,1 < 7 imposes additional conditionson 7, : 7 < 32—;/‘,

Thus, we have an important result: Newton's method for the function with Lipschitz positive Hessian
converges squarely near (||zg — z*|| < 372% to the solution with quadratic speed.

Theorem

Let f(x) be a strongly convex twice continuously differentiated function at R™, for the second
derivative of which inequalities are executed: [I,, < f”(x) < LI,. Then Newton's method with a
constant step locally converges to solving the problem with super linear speed. If, in addition,
Hessian is Lipschitz continuous, then this method converges locally to * with a quadratic speed.

Summary

It's nice:

e quadratic convergence near the solution z*
e affinity invariance

e the parameters have little effect on the convergence rate

It's not nice:

* it is necessary to store the hessian on each iteration: (’)(nz) memory

* it is necessary to solve linear systems: (’)(n3) operations

 the Hessian can be degenerate at x*

« the hessian may not be positively determined — direction — (" (z)) ™! f'(x) may not be a
descending direction

Possible directions

e Newton's damped method (adaptive stepsize)
e Quasi-Newton methods (we don't calculate the Hessian, we build its estimate - BFGS)

Quadratic evaluation of the function by the first order oracle (superlinear convergence)

The combination of the Newton method and the gradient descent (interesting direction)

Higher order methods (most likely useless)

Materials

Going beyond least-squares — | : self-concordant analysis of Newton method

Going beyond least-squares - Il : Self-concordant analysis for logistic regression

About global damped Newton convergence issue |

About global damped Newton convergence issue Il Open in Colab

Code

Open in Colab

Quasi Newton methods

Intuition

For the classic task of unconditional optimization f(x) — m]iRn the general scheme of iteration
xeR"

method is written as:
Tk+1 = Tk + O Sk

In the Newton method, the s; direction (Newton's direction) is set by the linear system solution at

each step:
—-1
Sk — _Bkvf(wk)a By = f:cw (xk)
i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear system.

Note here that if we take a single matrix of By = I, as By, at each step, we will exactly get the
gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the By matrix so that it
tends in some sense at k — 00 to the true value of inverted Hessian in the local optimum £, (z.).
Let's consider several schemes using iterative updating of B_k matrix in the following way:

By1 = B + AB;,
Then if we use Taylor's approximation for the first order gradient, we get it:
Vf(xr) = VI(@pi1) & foo(@rg1)(@r — Tpi1)-
Now let's formulate our method as:
Azy, = Byy1Ayg, where y, = Vf(zp1) — Vf(zr)
in case you set the task of finding an update ΔB_k:

AB, Ay, = Az — B Ay,

Broyden method

The simplest option is when the amendment ΔB_k has a rank equal to one. Then you can

look for an amendment in the form

ABy = pir.qrqy -

where μ_k is a scalar and q_k is a non-zero vector. Then mark the right side of the equation
to find ΔB_k for Δz_k:

Az, = Az — B Ay
We get it:
ik aray Ay = Az
(r - @ Ayr) g = Az,
A possible solution is: $g_k = \Delta z_k$, $\mu_k = \left(q_k"\top \Delta y_k\right)* {-1}$.

Then an iterative amendment to Hessian's evaluation at each iteration:

(Awk — BkAyk)(Awk — BkAyk)T
<A£Bk — Br Ay, Ayk> .

ABy, =

Davidon-Fletcher-Powell method

ABk = ,ulAa:k(Axk)T + /.LszAyk(BkAyk)T.

AB, — (Azi)(Azi)' (BrAyx)(BrAyr)'
(Azy, Ayy) (Br Ay, Ayr,)

Broyden-Fletcher-Goldfarb—Shanno method

AB, = QUQ', Q=lq,®], @, ck" U:<i Z)

(Azy)(Azy)" (BrAyg)(BrAyr) ' T
AB, = — + .
: (Azy, Ay) (Br Ay, Ayg) PEPy

Code

e Open in Colab

e Comparison of quasi Newton methods

