Useful definitions and notations

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by \mathbb{R}^n , while the space of real-valued $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$.

Basic linear algebra background

The standard **inner product** between vectors x and y from \mathbb{R}^n is given by

product between vectors
$$x$$
 and y from \mathbb{R}^n is given by
$$\langle x,y\rangle=x^\top y=\sum_{i=1}^n x_iy_i=y^\top x=\langle y,x\rangle$$

Here x_i and y_i are the scalar i-th components of corresponding vectors.

The standard **inner product** between matrices X and Y from $\mathbb{R}^{m imes n}$ is given by

$$\langle X,Y\rangle = \operatorname{tr}(X^\top Y) = \sum_{i=1}^m \sum_{j=1}^n X_{ij} Y_{ij} = \operatorname{tr}(Y^\top X) = \langle Y,X\rangle$$
 The determinant and trace can be expressed in terms of the eigenvalues chekiphotics for X .

$$\det A = \prod_{i=1}^n \lambda_i, \qquad \det A = \sum_{i=1}^n \lambda_i \qquad \mathsf{A} = \mathsf{U} \mathsf{\Lambda} \mathsf{U}^\mathsf{T}$$

Don't forget about the cyclic property of a trace for a square matrices A, B, C, D:

$$\operatorname{tr}(ABCD) = \operatorname{tr}(DABC) = \operatorname{tr}(CDAB) = \operatorname{tr}(BCDA)$$

The largest and smallest eigenvalues satisfy

I smallest eigenvalues satisfy
$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^\top A x}{x^\top x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^\top A x}{x^\top x}$$

and consequently $\forall x \in \mathbb{R}^n$ (Rayleigh quotient):

$$\in \mathbb{R}^n$$
 (Rayleigh quotient):
$$\lambda_{\min}(A)x^{ op}x \leq x^{ op}Ax \leq \lambda_{\max}(A)x^{ op}x$$

A matrix $A \in \mathbb{S}^n$ (set of square symmetric matrices of dimension n) is called **positive** (semi)definite if for all $x \neq 0$ (for all x) : $x^{\top}Ax > (\geq)0$. We denote this as

$$||A||_{p} = \sup_{x \neq 0} \frac{\langle x, Ax \rangle}{||x||_{p}}$$

$$A \succ (\succeq)0.$$

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Ephonoe (10+

The condition number of a nonsingular matrix is defined as

$$A' = \begin{pmatrix} \frac{1}{1000} & 0 \\ 0 & 1 \end{pmatrix}$$

$$\kappa(A) = ||A|| ||A^{-1}||$$

11AV2 = GMX (A) = 1000

Matrix and vector multiplication

Let A be a matrix of size m imes n, and B be a matrix of size n imes p, and let the product AB be:

C = AB

then C is a $m \times p$ matrix, with element (i,j) given by:

Let A be a matrix of shape $m \times n$, and x be $n \times 1$ vector, then the i-th component of the product:

$$z=Ax$$
 $O(n^2)$

is given by:

$$oxed{z_i = \sum_{k=1}^n a_{ik} x_k}$$

Finally, just to remind:

$$\begin{array}{ccc} & C = AB & C^\top = B^\top A^\top \\ & & \text{mn nP} & \text{pm} & \text{pn nm} \\ & AB \neq BA \end{array}$$

$$e^A = \sum\limits_{k=0}^{\infty} rac{1}{k!} A^k$$

 $e^{A+B}
eq e^A e^B$ (but if A and B are commuting matrices, which means that AB = BA, $e^{A+B} = e^A e^B$)

$$\langle x, Ay
angle = \langle A^ op x, y
angle$$

Gradient

Let $f(x):\mathbb{R}^n o\mathbb{R}$, then vector, which contains all first order partial derivatives:

named gradient of f(x). This vector indicates the direction of steepest ascent. Thus, vector $-\nabla f(x)$ means the direction of the steepest descent of the function in the point. Moreover, the gradient vector is always orthogonal to the contour line in the

point.

Hessian

Let $f(x):\mathbb{R}^n o\mathbb{R}$, then matrix, containing all the second order partial derivatives:

In fact, Hessian could be a tensor in such a way: $(f(x): \mathbb{R}^n \to \mathbb{R}^m)$ is just 3d tensor, every slice is just hessian of corresponding scalar function $(H(f_1(x)), H(f_2(x)), \ldots, H(f_m(x)))$.

Jacobian

The extension of the gradient of multidimensional $f(x):\mathbb{R}^n \to \mathbb{R}^m$ is the following matrix:

$$f'(x) = rac{df}{dx^T} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & rac{\partial f_1}{\partial x_2} & \cdots & rac{\partial f_1}{\partial x_n} \ rac{\partial f_2}{\partial x_1} & rac{\partial f_2}{\partial x_2} & \cdots & rac{\partial f_2}{\partial x_n} \ dots & dots & dots & dots \ rac{\partial f_m}{\partial x_1} & rac{\partial f_m}{\partial x_2} & \cdots & rac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Summary

$$f(x):X o Y; \qquad rac{\partial f(x)}{\partial x}\in G$$

X	Υ	G	Name
\mathbb{R}	\mathbb{R}	\mathbb{R}	f'(x) (derivative)
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^{n}	$rac{\partial f}{\partial x_i}$ (gradient)
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{m imes n}$	$rac{\partial f_i}{\partial x_j}$ (jacobian)
$\mathbb{R}^{m imes n}$	\mathbb{R}	$\mathbb{R}^{m imes n}$	$rac{\partial f}{\partial x_{ij}}$

General concept

Naive approach

$$f(x) = c^{\top} x$$

 $\nabla f(x) = c$

Scalar notation of a function

$$f(x) = \sum_{i=1}^{n} c_i x_i \qquad \frac{\partial f(x)}{\partial x_k} = c_k$$
 Simple derivative

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial \left(\sum_{i=1}^n c_i x_i\right)}{\partial x_k}$$

One of the most important practical tricks here is to separate indices of sum (i) and

partial derivatives (k). Ignoring this simple rule tends to produce mistakes.

Differential approach

The guru approach implies formulating a set of simple rules, which allows you to calculate derivatives just like in a scalar case. It might be convenient to use the F. 6, → B differential notation here.

Differentials

After obtaining the differential notation of df we can retrieve the gradient using

 $f(x+dx) - f(x) \approx df$

derivative of the matrix/vector function, we treat "old" dx as the constant dx_1 , then calculate $d(df) = d^2 f(x)$

$$oxed{d^2f(x)=\langle
abla^2f(x)dx_1,dx_2
angle}=\langle H_f(x)dx_1,dx_2
angle$$

Properties

Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).

$$dA = 0$$

$$d(\alpha X) = \alpha(dX)$$

$$d(AXB) = A(dX)B$$

$$d(X+Y) = dX + dY$$

$$d(X^{\top}) = (dX)^{\top}$$

$$d(XY) = (dX)Y + X(dY)$$

$$d(XY) = \langle dX, Y \rangle + \langle X, dY \rangle$$

$$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$$

$$d\left(\det X\right) = \det X\langle X^{-\top}, dX \rangle$$

$$d\left(\operatorname{tr} X\right) = \langle I, dX \rangle$$

$$df(g(x)) = \frac{df}{dg} \cdot dg(x)$$

$$d(X,Y) = \langle I, dX \rangle$$

$$d(X,Y) = \langle I$$

 $d(X^{-1}) = -X^{-1}(dX)X^{-1}$

References

- Convex Optimization book by S. Boyd and L. Vandenberghe Appendix A.
 Mathematical background.
- Numerical Optimization by J. Nocedal and S. J. Wright. Background Material.
- Matrix decompositions Cheat Sheet.
- Good introduction
- The Matrix Cookbook
- MSU seminars (Rus.)
- Online tool for analytic expression of a derivative.
- Determinant derivative

Matrix calculus

- Find the derivatives of f(x) = Ax, $\nabla_x f(x) = ?, \nabla_A f(x) = ?$
- 2 Find abla f(x), if $f(x) = c^T x$.
- $^{egin{array}{l} \mathbb{R} \end{array}}$ Find abla f(x), if $f(x)=rac{1}{2}x^TAx+b^Tx+c$.
- 4 Find abla f(x), f''(x), if $f(x) = -e^{-x^Tx}$.
- ⁵ Find the gradient abla f(x) and hessian f''(x), if $f(x)=rac{1}{2}\|Ax-b\|_2^2$.
- 6 Find abla f(x), if $f(x) = \|x\|_2, x \in \mathbb{R}^p \setminus \{0\}$.
- 7 Find abla f(x) , if $f(x) = \|Ax\|_2, x \in \mathbb{R}^p \setminus \{0\}.$
- 8 Find abla f(x), f''(x), if $f(x) = rac{-1}{1+x^{ op}x}$.
- 9 Calculate df(x) and abla f(x) for the function $f(x) = \log(x^ op \mathrm{A} x)$.
- 10 Find f'(X), if $f(X) = \det X$

Note: here under f'(X) assumes first order approximation of f(X) using Taylor series: $f(X + \Delta X) \approx f(X) + \mathbf{tr}(f'(X)^{\top} \Delta X)$

11 Find f''(X), if $f(X) = \log \det X$

Note: here under f''(X) assumes second order approximation of f(X) using Taylor series: $f(X + \Delta X) \approx f(X) + \mathbf{tr}(f'(X)^{\top} \Delta X) + \frac{1}{2} \mathbf{tr}(\Delta X^{\top} f''(X) \Delta X)$

12 Find gradient and hessian of $f:\mathbb{R}^n o\mathbb{R}$, if:

$$f(x) = \log \sum_{i=1}^m \exp(a_i^ op x + b_i), \quad a_1, \dots, a_m \in \mathbb{R}^n; \quad b_1, \dots, b_m \in \mathbb{R}^n$$

- 13 What is the gradient, Jacobian, Hessian? Is there any connection between those three definitions?
- ¹⁴ Calculate: $\frac{\partial}{\partial X} \sum \operatorname{eig}(X), \quad \frac{\partial}{\partial X} \prod \operatorname{eig}(X), \quad \frac{\partial}{\partial X} \operatorname{tr}(X), \quad \frac{\partial}{\partial X} \operatorname{det}(X)$
- ¹⁵ Calculate the Frobenious norm derivative: $\dfrac{\partial}{\partial X} \|X\|_F^2$
- 16 Calculate the gradient of the softmax regression $\nabla_{\theta}L$ in binary case (K=2) n -dimensional objects:

Pewerue:
$$df = d(ln \langle x, A \rangle) = \frac{d(\langle x, A \rangle)}{\langle x, A \rangle} = \frac{d(\langle x, A \rangle)}{$$

 $f(x) = ln \langle x, Ax \rangle$

Normed:

XERN

1. df=?

2. of=?

 $df = (\frac{(A+AT)x}{(x,Ax)}, dx_1)$

 $df = \langle d(\frac{(A+A^T)x}{\langle x, Ax \rangle}), dx_{\Delta} \rangle =$

$$= \frac{(A+A^{T})dx - (x,Ax)}{(x,Ax)^{2}} - (A+A^{T})x d((x,Ax))dx$$

$$= \frac{(A+A^{T})dx \cdot (x,Ax) - (A+A^{T})x}{(x,Ax)^{2}} - (A+A^{T})x,dx}{(x,Ax)^{2}} dx$$

$$= \frac{(A+A^{T})dx \cdot (x,Ax) - (A+A^{T})x}{(x,Ax)^{2}} dx$$

$$= \frac{(A+A^{T})dx \cdot (x,Ax)}{(x,Ax)^{2}} - \frac{(A+A^{T})x}{(x,Ax)^{2}} - \frac{(A+A^{T})x}{(x,Ax)^{2}} dx$$

$$= \frac{(A+A^{T})dx \cdot (x,Ax)}{(x,Ax)^{2}} - \frac{(A+A^{T})x}{(x,Ax)^{2}} - \frac{(A+A^{T})x}{(x,Ax)^{2}} dx$$

$$= \frac{(A+A^{T})dx \cdot (x,Ax)}{(x,Ax)^{2}} - \frac{(A+A^{T})x}{(x,Ax)^{2}} - \frac{(A+$$

$$\frac{(A+A^{T})(\frac{x^{T}A\times T-x^{T}A-x^{T}A-x^{T}A}{(x^{T}A\times T-x^{T}A+A^{T})}}{(x^{T}A+x^{T}A+x^{T}A^{T})} = \nabla^{2}f = \frac{(A+A^{T})(\overline{x}A\times T-x^{T}(A+A^{T})}{(x^{T}A+x^{T}A+x^{T}A^{T})} = \frac{(A+A^{T})(\overline{x}A\times T-x^{T}(A+A^{T})}{(x^{T}A+x^{T}A+x^{T}A+x^{T}A+x^{T}A^{T})}$$

$$df = d\left(\frac{1}{2} < X, Ax > + < b, x > + < 2A \in \mathbb{R}^{m \times n}\right)$$

$$= \frac{1}{2} < dx, Ax > + \frac{1}{2} < X, Adx > + < b, dx > + < < b, dx > < c = \mathbb{R}$$

$$= \frac{1}{2} (Ax, dx) + \frac{1}{2} < Ax, dx > + < b, dx > < c = < \frac{1}{2} (A + A^{T}) \times + b, dx > < c = < \frac{1}{2} (A + A^{T}) \times + b$$

$$= > \sqrt{f} = \frac{1}{2} (A + A^{T}) \times + D$$

df = ?

√f=?

 $f(x) = \frac{1}{2} x^{T} \underbrace{Ax} + b^{T}x + C$ $eR^{n} = \frac{1}{2} x^{T} \underbrace{Ax} + b^{T}x + C$

xe R"

$$df = \left(\frac{1}{2}(A+A^T)X+b, dX_1\right) \qquad dX_1 = const$$

$$d(df) = d^2f = \left(d\left(\frac{1}{2}(A+A^T)X+b\right), dX_1\right) =$$

$$= \left(\frac{1}{2}(A+A^T)dX, dX_1\right) =$$

$$= \left(\frac{1}{2}(A+A^T)dX, dX_1\right) =$$

$$= \langle \frac{1}{2} (A+A^T) dx, dx_1 \rangle =$$

$$= \langle \frac{1}{2} (A+A^T) dx_1, dx_2 \rangle$$

$$= \langle \frac{1}{2} (A+A^T) dx_2, dx_3 \rangle$$

$$= \langle \frac{1}{2} (A+A^T) dx_1, dx_2 \rangle$$

$$= \langle \frac{1}{2} (A+A^T) dx_2, dx_3 \rangle$$

$$= \langle \frac{1}{2} (A+A^T) dx_3, dx_4 \rangle$$

$$h_{ heta}(x) = egin{bmatrix} P(y = 1 | x; heta) \ P(y = 2 | x; heta) \ dots \ P(y = K | x; heta) \end{bmatrix} = rac{1}{\sum_{j=1}^K \exp(heta^{(j) op}x)} egin{bmatrix} \exp(heta^{(1) op}x) \ \exp(heta^{(2) op}x) \ dots \ \exp(heta^{(K) op}x) \end{bmatrix}$$

$$L(heta) = -\left[\sum_{i=1}^n (1-y^{(i)}) \log(1-h_ heta(x^{(i)})) + y^{(i)} \log h_ heta(x^{(i)})
ight]$$

Find
$$\nabla f(X)$$
, if $f(X)=\operatorname{tr} AX$
Find $\nabla f(X)$, if $f(X)=\langle S,X\rangle-\log\det X$
Find $\nabla f(X)$, if $f(X)=\ln\langle Ax,x\rangle,A\in\mathbb{S}_{++}^{\mathbb{n}}$

20 Find the gradient $\nabla f(x)$ and hessian f''(x), if

$$f(x) = \ln(1 + \exp\langle a, x \rangle)$$

- 21 Find the gradient abla f(x) and hessian f''(x), if $f(x)=rac{1}{3}\|x\|_2^3$
- 22 Calculate abla f(X), if $f(X) = \|AX B\|_F, X \in \mathbb{R}^{k imes n}, A \in \mathbb{R}^{m imes k}, B \in \mathbb{R}^{m imes n}$
- ²³ Calculate the derivatives of the loss function with respect to parameters $\frac{\partial L}{\partial W}$, $\frac{\partial L}{\partial b}$ for the single object x_i (or, n=1)

Learning

- 24 Find the gradient abla f(x) and hessian f''(x), if $f(x)=\langle x,x
 angle^{\langle x,x
 angle},x\in\mathbb{R}^p\setminus\{0\}$
- 25 Find the gradient abla f(x) and hessian f''(x), if $f(x)=rac{\langle Ax,x
 angle}{\|x\|_2^2}, x\in\mathbb{R}^p\setminus\{0\}, A\in\mathbb{S}^n$
- 26 Find the gradient abla f(x) and hessian f''(x), if $f(x)=rac{1}{2}\|A-xx^ op\|_F^2, A\in\mathbb{S}^n$
- 27 Find the gradient abla f(x) and hessian f''(x), if $f(x) = \|xx^ op\|_2$
- 28 Find the gradient abla f(x) and hessian f''(x), if

$$f(x) = rac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(a_i^ op x)
ight) + rac{\mu}{2} \|x\|_2^2, \; a_i \in \mathbb{R}^n, \; \mu > 0.$$

29 Match functions with their gradients:

$$\Box f(X) = TrX$$

$$\Box \ f(X) = TrX^{-1}$$

$$\Box f(X) = \det X$$

$$\Box f(X) = \ln \det X$$

a
$$\nabla f(\mathbf{X}) = \mathbf{X}^{-1}$$

b
$$\nabla f(\mathbf{X}) = \mathbf{I}$$

$$\circ \quad
abla f(\mathbf{X}) = \det(\mathbf{X}) \cdot (\mathbf{X}^{-1})^{ op}$$

d
$$abla f(\mathbf{X}) = - \left(\mathbf{X}^{-2}\right)^{ op}$$

30 Calculate the first and the second derivative of the following function $f:S o\mathbb{R}$ $f(t)=\det(A-tI_n),$ where $A\in\mathbb{R}^{n imes n}, S:=\{t\in\mathbb{R}:\det(A-tI_n)
eq 0\}.$

31 Find the gradient abla f(x), if $f(x) = \operatorname{tr} \left(A X^2 B X^{- op} \right)$.

$$f(X) = \langle S, X \rangle - lndet \rangle$$
 $df = \langle S, dX \rangle - \frac{d(det X)}{det X} = det X$

$$= \langle S, dX \rangle - \frac{\det X \cdot \langle X, dX \rangle}{\det X} =$$

$$= \langle S - X^{T}, dX \rangle$$

$$\nabla f = S - X^{T}$$