Theory = Matrix calculus

¢ Useful definitions and notations

We will treat all vectors as column vectors by default. The space of real vectors of
length n is denoted by R™, while the space of real-valued m x n matrices is denoted
by RmXn_

Basic linear algebra background 4X()X.z>
The standard inner product between vectors x and y from R™ is given by
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Here x; and y, are the scalar :-th components of corresponding vectors. )(e ?hM'\

The standard inner product between matrices X and Y from R™*" is given by

(X,Y)=t(XY) | ZZX”YU = (YT X) = (¥, X) B 5
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The determinant and trac can be expressed in terms of the eigenvalues CNeKTPNGHR FG'JI\

detA:ﬂ)\i, trA:iAi A:MI\O‘:
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Don't forget about the cyclic property of a trace for a square matrices A,\B, C, D: U\L—-L
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tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

The largest and smallest eigenvalues satisfy _M__}
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A matrix A € S™ (set of square symmetric matrices of dimension n) is caIIed positive

(semi)definite if for all z # O(for all z) : x " Az > (>)0. We denote this as
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and consequently V& € R"™ (Rayleigh quotient):

Amin(A)z Tz < 2" Az < Apax(A)z "z



|\ 000 A
A= (=)0 \ Sonewa (0 £
Thec d|t|on number of a nonsingular matrix is defined as ,OO&
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Matrix and vector multiplication \\ M L= G/Np)c (1&) = 1060

Let A be a matrix of size m X n, and B be a matrix of size n x p, and let the product

AB be o( \n3> - naubdbrd
C = AB AATOPUTH
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then C'is am X p matrix, with element (4, j) given by: O(h)
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Let A be a matrix of shape m X n, and x ben X 1 vector, then the 2-th component of
A
z= Ax O ( n
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the product:

is given by:
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Finally, just to remind:

C’:AB C'=B'A"
mnnP oM pn aAM
AB;ABA
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eAt+B =+ ede®? (butif A and B are commuting matrices, which means that
AB = BA, eAtB = e4¢P)

(z, Ay) = (AT z,y)

Gradlen* (M Y

Lef f(z) : R® — R, }en vector, which contains all first order partial derivatives:
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named gradient of f(z). This vector indicates the direction of steepest ascent. Thus,

vector —V f(x) means the direction of the steepest descent of #he function in the

point. Moreover, the gradidnt vector is always orthogonal to thé contour line in the

ot R
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Hessian —'&_‘_’?ﬁ_’_ v% e
Let f(z) : R™ — R, then matrix, containing all th e)c(ond order partial derivatives:

point.
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In fact, Hessian could be a tensor in such a way: (f(z) : R® — R™) is just 3d tensor,
every slice is just hessian of corresponding scalar function

(H (f1(2)), H (f2(2)), ..., H (fu(2)))-

Jacobian

The extension of the gradient of multidimensional f(x) : R™® — R™ is the following
matrix:
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Summary
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General concept

Naive approach

0f(x)

eG
Ox
G Name
R f'(z) (derivative)
R" of (gradient)
81137;
R™xn % (jacobian)
mxn ﬁ

The basic idea of naive approach is to reduce matrle?ector derivatives to the well-

known scalar derivatives.

Matrix notation of a function

V=

flz)=c'z

v
Scalar notation of a function

n

fl@) =) c;

1=1
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Simple derivative
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One of the most important practical tricks here is to separate indices of sum (z) and



partial derivatives (k). Ignoring this simple rule tends to produce mistakes.

Differential approach

The guru approach implies formulating a set of simple rules, which allows you to
calculate derivatives just like in a scalar case. It might be convenient to use the
differential notation here. (Q“ —?‘Q

Differentials 'F X’V ClX\ )Q (K\ O\F

After obtaining the differential notation of d f we can retrieve the gradient using
following formula: “" ™ = LGXD JG"‘F— C

A d (cex)= df(z) = (Vf(z),dz) dx= %
R CLd
Then, if we ifferential of the above form and we need to calculate the second

derivative of the matrix/vector function, we treat “old” dx as the constant dz, then

calculate d(df) = d? f(z)

d’f(z) = <V2f(ac)da:1,qu> = (H¢(z)dzq,dzs)

Properties
Let A and B be the constant matrices, while X and Y are the variables (or matrix
functions).

dA =0

d(aX) = a(dX)
d(AXB) = A(dX)B

(
d(X+Y) = dX+dY
d(XY) (dX)Y + X(dY °3“°“
dX,Y) = (dX,Y) + (X,dy) PP
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dX — (d$)X
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J(det X) — det X(X T,ax)| = ee(PY)
d(tr X) = (I,dX)  tXs ty T K-
df ={I,%>
df(g(z)) = a4 dg(z) o!([[,b),
(T,
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d(X1) = —X"1(dX)X !
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Determinant derivative



Exercises Matrix calculus

Matrix calculus
Find the derivatives of f(z) = Az, V,f(z)=7,Vsf(x) =7
Find V f(z), if f(z) = c'z.
Find V f(z), if f(z) = %CBTAx + bz +ec

T

Find Vf(z), f"(x), it f(z) = —e % 2.
Find the gradient V f(z) and hessian f"(z), if f(z) = %HA:I} —b|l3.
Find V£ (), f f(z) = 2]}, € R?\ {0}.

Find V f(z), if f(z) = ||Az||s,z € R? \ {0}.

Find V f(x), f"(z), if f(z) = =

l+az'x

Calculate df(z) and V f(z) for the function f(z) = log(z " Azx).

Find f'(X), if f(X) =det X

Note: here under f'(X) assumes first order approximation of f(X) using Taylor
series: f(X + AX) = f(X) + tr(f'(X)TAX)

Find £ (X), if f(X) = log det X

Note: here under f"(X) assumes second order approximation of f(X) using Taylor
series: f(X + AX) = f(X) + tr(f'(X)TAX) 4+ Ltr(AX T f"(X)AX)

Find gradient and hessian of f : R™ — R, if:

f(z) = logZeXp(aiTa: +b,), ay...,a, R b,...;b, R

1=1

What is the gradient, Jacobian, Hessian? Is there any connection between those
three definitions?

Calculate: —Zelg( )s aiXHeig(X), %tr(X), aiXdet( )

: -~ 0
Calculate the Frobenious norm derivative: — || X||%

0X

Calculate the gradient of the softmax regression VL in binary case (K = 2) n -
dimensional objects:
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-P(y = 1|a:; (9) } -eXp(e(l)Tm)-
P(y = 2|z;0) 1 exp(9(2)T;c)
h@(w) = . = Z;ileXp(e(j)Tw) .
P = Kei0) exp(072),
L(6) = — 2(1 — y) log(1 — hg(z)) + y'¥ log hy(z?)
i=1

Find V £(X), if f(X) =tr AX

Find V f(X), if f(X) = (S,X) —logdet X

Find V f(X), if f(X) = In(Az,z), A €S} |
Find the gradient V f(z) and hessian f"(z), if

f(x) =In (1 + exp(a,z))

Find the gradient V f(z) and hessian f"(z), if f(z) = 5 ||=|3

Calculate V f(X), if f(X) = ||AX — B||r, X € RF*" 4 ¢ R™*k B ¢ Rm*n

OL OL

Calculate the derivatives of the loss function with respect to parameters < W o

for the single object x; (or, n = 1)

Learning

Object Model Prediction Lo
z; € R?y; € RE W e REXP p e R 9 =Wz + b , : i=1 ’

Find the gradient V f(z) and hessian £ (z), if f(z) = (z,z) "%,z € R?\ {0}
Find the gradient V f(x ) and hessian f"(z), if

flz) = 428z e P\ {0}, A € S

Find the gradient V f(z) and hessian f"(z), if f(z) = $[|A —zz |}, A € S"
Find the gradient V f(z) and hessian " (z), if f(z) = ||zz " ||»

Find the gradient V f(x) and hessian f"(z), if

f(z) = % > log (1 + exp(a?az)) — %Hw”%, a; € R", u>0.
i—1

Match functions with their gradients:

f(X) =TrX



Vi(X)=X"1
ViX) =1
V(X) = det(X) - (X71) '

VIX)=—(X2)"
Calculate the first and the second derivative of the following function f : § — R
f(t) = det(A —tI,), where A € R S := {t € R:det(4 —tI,) # 0}.

Find the gradient V f(z), if f(z) = tr (AX?BX T) ?
o k-

£(x) = 4@ X> —fnded X e

df= (5 X - 2 Af; de kX0
€
= <SJ\(> *W<XJ’O‘)~<>:

detF
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