ecmGeneral formulation

npoekt $+g / 3+T E C T / 1$

ak
 1.493 $79 g^{4}$

bes

Some necessary or／and sufficient conditions are known（See Optimality conditions．KKT and Convex optimization problem）

In fact，there might be very challenging to recognize the convenient form of optimization problem．
Analytical solution of KKT could be inviable．

Iterative methods

Typically，the methods generate an infinite sequence of approximate solutions

$$
\left\{x_{t}\right\},
$$

which for a finite number of steps（or better－time）converges to an optimal（at least one of the optimal）solution x_{*} ．

[^0]while not

Oracle conception

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

Complexity

Unsolvability
 Black - box

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Consider the following simple optimization problem of a function over unit cube:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
\text { s.t. } & x \in \mathbb{B}^{n}
\end{aligned}
$$

We assume, that the objective function $f(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous on \mathbb{B}^{n} :

$$
|f(x)-f(y)| \leq L\|x-y\|_{\propto} \mid \forall x, y \in \mathbb{B}^{n}
$$

with some constant L (Lipschitz constant). Here \mathbb{B}^{n} - the n-dimensional unit cube

$$
\mathbb{B}^{n}=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\}
$$

Our goal is to find such $\tilde{x}\left|f(\tilde{x})-f^{*}\right| \leq \varepsilon$ fo some positive ε. Here f^{*} is the global minima of the problem. Uniformgrithpoints on each dimension guarantees at least this quality:

Our goal is to find the p for some ε. So, we need to sample $\left(\frac{L}{2 \varepsilon}\right)^{n}$ points, since we need to measure function in p^{n} points. Doesn't look scary, but if we'll take $L=2, n=11, \varepsilon=0.01$, computations on the modern personal computers will take $31,250,000$ years.
(1) Hepozspew were al y
used. Bag. ont.
n.

Function value closeness:

$$
\begin{array}{r}
\left\|x_{k}-x_{*}\right\|_{2}<\varepsilon \\
f_{\boldsymbol{k}}=\boldsymbol{f}\left(\mathbf{x}_{\mathbf{k}}\right) \\
\left\|f_{k}-f^{*}\right\|_{2}<\varepsilon
\end{array}
$$

Closeness to a critical point

$$
\left\|f^{\prime}\left(x_{k}\right)\right\|_{2}<\varepsilon
$$

But x_{*} and $f^{*}=f\left(x_{*}\right)$ are unknown!
Sometimes, we can use the trick:

$$
\begin{aligned}
& \text { YMHGIX } \\
& H O^{-}
\end{aligned}
$$

$$
\underbrace{\mid x_{k+1}-x_{k} \|}\}\left\|x_{k+1}-x_{k}+x_{*}-x_{*}\right\| \leq\left\|x_{k+1}-x_{*}\right\|+\left\|x_{k}-x_{*}\right\| \leq \underbrace{2 \varepsilon}
$$

Note: it's better to use relative changing of these values, i.e. $\frac{\left\|x_{k+1}-x_{k}\right\|_{2}}{\left\|x_{k}\right\|_{2}}$.

Local nature of the methods

TABLE OF CONTENTS
Line search
Zero order methods
First order methods
Adaptive metric methods
LP and simplex algorithm
Automatic differentiation

Cropocts exogullocty $\quad r_{k}=\left|f_{k}-f^{\prime \prime}\right|$
Mycis $r_{k}-$ nocn rucen ${ }^{\geqslant 0}$, $0 x-2$
KO .
Onp. Nuнreithar exogumocto.
nocn. r_{k} - ехоgut à пиней но, есау

$$
r_{x} \leqslant C \cdot q^{k} \quad \forall k
$$

$c>0,0<q<1$
uge 9: $\quad\left\|x_{k+1}-x^{+}\right\| \leqslant q \cdot\left\|x_{k}-x^{*}\right\|$
TAK $x e_{\text {na } 3} \quad\left\|x_{k-1}-x^{*}\right\| \leq q^{2} \cdot\left\|x_{k-1}-x^{+}\right\|$

- эКепоненуча Аная сктт
- reaverpunecraa сх-то

$$
\begin{aligned}
& r_{x}=\frac{1}{3^{k}} \quad \begin{array}{l}
\text { npusep: } \\
r^{k} \\
r^{k} \\
q=?=\frac{1}{3} \\
\text { eko pocit }
\end{array} \quad \\
&
\end{aligned}
$$

еен γ_{k} ех-ся бострее, zell пиннеитая,
то exogcunocts - ebepxnuteetrar

leme r_{x} ex-ea megnerstel, з з \forall nureйнer ex-т6 \rightarrow crbaubeètiad upcurep:

$$
\begin{array}{r}
r_{k}=\left\{\frac{\rho}{K}\right\}_{k=1}^{\infty} \quad \text { } \quad \text { APM. } \\
S_{n}=\sum_{i=1}^{n} r_{i}
\end{array}
$$

Keilk oпреgervть exоgсиосто?
(1) Teet kopнeú

$$
q=\lim _{k \rightarrow \infty} \sup \left(r_{k}\right)^{\frac{1}{k}}
$$

- $0 \leqslant q<1$ - cxogat er nинейто co crepoctoto q
- ecall $q=0$ - exogater cbepxnureãto
- lecler $q=1$ - exogutes gवchuteйto $q>1$ нebo $3 \mu 0 \times H 0$
(2) Tect otro mefuil (RATIO TEST)

$$
q=\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}
$$

- $0 \leqslant q<1$ - посп ехтея пинееіто co ckopoctto 9
- $q=0$ - сыерхпинейнал со ехото
- $q=1$ - мубпинеиіная $\boldsymbol{c x}$-ть.
- eem $\nexists q$ ecan $q:=\lim _{k \rightarrow \infty} \sup \frac{r_{k+1}}{r_{k}}<1$

мо丈но eкazar6, यо r_{k} ex-ea nиней но co cropoctoto he borvel of

- ecm $\nexists q q:=\lim _{k \rightarrow \infty} \inf \frac{r_{k+1}}{r_{k}}=1$
$\Rightarrow r_{k}$ ex-тя еубпикеи́но
Mpluep:

$$
r_{k}=\frac{1}{k} \quad \lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}=\lim _{k \rightarrow \infty} \frac{k}{k+1}=1
$$

Ipdelop:

$$
\begin{aligned}
& r_{k}=\frac{1}{k^{2}} \frac{k^{2}}{(k+1)^{2}} \\
& \text { ex-cs } \\
& \text { eydnur. } \\
& r_{k}=\frac{1}{k 9} \quad q>1 \\
& \text { 3agaza: } \\
& r_{x}=\left(\frac{1}{k}\right)^{k} \lim r_{x}^{\frac{1}{k}} \\
& \text { ex-T6 } \\
& \lim _{k \rightarrow \infty}\left(\frac{1}{k}\right)
\end{aligned}
$$

noueros:

$$
r_{k}=(0.707)^{k}
$$

$$
\text { null- } C x-T \theta q_{2}=0.707
$$

$$
\begin{aligned}
& r_{k}=(0.707)^{2^{k}} \\
& r_{k}=1+(0.5)^{2^{k}} \\
& \tilde{r}_{k}=r_{k}-1=(0.5)^{2^{k}} \\
& r_{k}=\frac{1}{k!} ? ?
\end{aligned}
$$

[^0]: def GeneralScheme

