
Methods / LP and simplex algorithm

Generally speaking, all problems with linear objective and linear equalities\inequalities

constraints could be considered as Linear Programming. However, there are some

widely accepted formulations.
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for some vectors ,  and matrix . Where the inequalities are

interpreted component-wise.

This form seems to be the most intuitive and geometric in terms of visualization. Let us

have vectors ,  and matrix .

What is LP

min
x∈Rn

c⊤x

s.t. Ax ≤ b
(LP.Basic)

c ∈ Rn b ∈ Rm A ∈ Rm×n

Standard form

c ∈ Rn b ∈ Rm A ∈ Rm×n

min
x∈Rn

c⊤x

s.t. Ax = b

xi ≥ 0, i = 1, … , n

(LP.Standard)
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Imagine, that you have to construct a diet plan from some set of products: 

. Each of the products has its own vector of nutrients. Thus, all the food information

could be processed through the matrix . Let also assume, that we have the vector of

requirements for each of nutrients . We need to find the cheapest configuration

of the diet, which meets all the requirements:
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Requirements

c ∈ ℝ # - cost per 100 g

Canonical form

min
x∈Rn

c⊤x

s.t. Ax ≤ b

xi ≥ 0, i = 1, … , n

(LP.Canonical)

Real world problems

Diet problem

W

r ∈ Rn

min
x∈Rp

c⊤x

s.t. Wx ≥ r

xi ≥ 0, i = 1, … , n

How to retrieve LP ⎪⎪
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Inequality to equality by increasing the dimension of the problem by .

unsigned variables to nonnegative variables.

The Simplex Algorithm walks along the edges of the polytope, at every corner

choosing the edge that decreases  most

This either terminates at a corner, or leads to an unconstrained edge (

optimum)

Basic transformations
m

Ax ≤ b ↔ {Ax + z = b
z ≥ 0

x ↔
⎧⎪⎨⎪⎩x = x+ − x−

x+ ≥ 0
x− ≥ 0

Chebyshev approximation problem

min
x∈Rn

∥Ax − b∥∞ ↔ min
x∈Rn

max
i

|a⊤
i x − bi|

min
t∈R,x∈Rn

t

s.t. a⊤
i x − bi ≤ t, i = 1, … , n

− a⊤
i x + bi ≤ t, i = 1, … , n

 approximation probleml1

min
x∈Rn

∥Ax − b∥1 ↔ min
x∈Rn

n∑
i=1

|a⊤
i x − bi|

min
t∈Rn,x∈Rn

1⊤t

s.t. a⊤
i x − bi ≤ ti, i = 1, … , n

− a⊤
i x + bi ≤ ti, i = 1, … , n

Idea of simplex algorithm
•

c⊤x

• −∞



We will illustrate simplex algorithm for the simple inequality form of LP:

Definition: a basis  is a subset of  (integer) numbers between  and , so that 

. Note, that we can associate submatrix  and corresponding right-

hand side  with the basis . Also, we can derive a point of intersection of all these

hyperplanes from basis: .

If , then basis  is feasible.

A basis  is optimal if  is an optimum of the .
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cB = [1, 3] 
feasible basis

B = [3, 5] 
unfeasible basis

Since we have a basis, we can decompose our objective vector  in this basis and find

the scalar coefficients :

If all components of  are non-positive and  is feasible, then  is optimal.

Proof:

⎪⎪
min
x∈Rn

c⊤x

s.t. Ax ≤ b
(LP.Inequality)

B n 1 m

rankAB = n AB

bB B

xB = A−1
B bB

AxB ≤ b B

B xB LP.Inequality

c

λB

λ⊤
BAB = c⊤ ↔ λ⊤

B = c⊤A−1
B

Main lemma
λB B B



Suppose, some of the coefficients of  are positive. Then we need to go through the

edge of the polytope to the new vertex (i.e., switch the basis)

a1 a2

a3 a4
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cB = [1, 3]

B’ = [3, 4]

xB

xB’

d

Let us consider .

∃x∗ : Ax∗ ≤ b, c⊤x∗ < c⊤xB

ABx∗ ≤ bB

λ⊤
BABx∗ ≥ λ⊤

BbB

c⊤x∗ ≥ λ⊤
BABxB

c⊤x∗ ≥ c⊤xB

Changing basis
λB

xB′ = xB + µd = A−1
B′ bB′

Finding an initial basic feasible solution
LP.Canonical

min
x∈Rn

c⊤x

s.t. Ax = b

xi ≥ 0, i = 1, … , n



The proposed algorithm requires an initial basic feasible solution and corresponding

basis. To compute this solution and basis, we start by multiplying by  any row  of 

 such that . This ensures that . We then introduce artificial

variables  and consider the following LP:

which can be written in canonical form  by setting

An initial basis for  is  with corresponding basic feasible

solution . We can therefore run the simplex method on 

, which will converge to an optimum . . There are several

possible outcomes:

. Original primal is infeasible.

. The obtained solution is a start point for the original problem (probably with slight

modification).

In the following problem simplex algorithm needs to check  vertexes with 

.

−1 i

Ax = b bi < 0 b ≥ 0
z ∈ Rm

min
x∈Rn,z∈Rm

1⊤z

s.t. Ax + Iz = b

xi, zj ≥ 0, i = 1, … , n j = 1, … , m

(LP.Phase 1)

min{~c⊤ ~x ∣ ~
A~x = ~

b, ~x ≥ 0}

~x = [ ], ~
A = [A I], ~

b = b, ~c = [ ]x

z

0n

1m

LP.Phase 1 ~
AB = I, ~

AN = A
~xN = 0, ~xB = ~

A−1
B

~
b = ~

b ≥ 0
LP.Phase 1 ~x∗ ~x = (~xN

~xB)

• ~c⊤ ~x > 0

• ~c⊤ ~x = 0 → 1⊤z∗ = 0

Convergence

Klee Minty example
2n − 1

x0 = 0



There are four possibilities:

Both the primal and the dual are infeasible.

The primal is infeasible and the dual is unbounded.

The primal is unbounded and the dual is infeasible.

Both the primal and the dual are feasible and their optimal values are equal.

A wide variety of applications could be formulated as the linear programming.

Simplex algorithm is simple, but could work exponentially long.

max
x∈Rn

2n−1x1 + 2n−2x2 + ⋯ + 2xn−1 + xn

s.t. x1 ≤ 5
4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125
…
2nx1 + 2n−1x2 + 2n−2x3 + … + xn ≤ 5n  x ≥ 0

Strong duality

•

•

•

•

Summary
•

•



Khachiyan’s ellipsoid method is the first to be proved running at polynomial

complexity for LPs. However, it is usually slower than simplex in real problems.

Interior point methods are the last word in this area. However, good implementations

of simplex-based methods and interior point methods are similar for routine

applications of linear programming.

Open in ColabOpen in Colab

Linear Programming. in V. Lempitsky optimization course.

Simplex method. in V. Lempitsky optimization course.

Overview of different LP solvers

TED talks watching optimization

Overview of ellipsoid method

Comprehensive overview of linear programming

Converting LP to a standard form

•

•

Code

Materials
•

•

•

•

•

•

•


