
Theory / Duality

Duality lets us associate to any constrained optimization problem a concave

maximization problem, whose solutions lower bound the optimal value of the original

problem. What is interesting is that there are cases, when one can solve the primal

problem by first solving the dual one. Now, consider a general constrained optimization

problem:

We’ll build , that preserves the uniform bound:

As a consequence:

We’ll consider one (of the many) possible way to construct  in case, when we have

a general mathematical programming problem with functional constraints:

And the Lagrangian, associated with this problem:

We define the Lagrange dual function (or just dual function)  as the

minimum value of the Lagrangian over : for 

When the Lagrangian is unbounded below in , the dual function takes on the value 

. Since the dual function is the pointwise infimum of a family of affine functions of 

Duality

 Primal: f(x) → min
x∈S

 Dual: g(y) → max
y∈Ω

g(y)

g(y) ≤ f(x) ∀x ∈ S, ∀y ∈ Ω

max
y∈Ω

g(y) ≤ min
x∈S

f(x)

g(y)

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, … , m

hi(x) = 0, i = 1, … , p

L(x, λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x) = f0(x) + λ⊤f(x) + ν ⊤h(x)

g : Rm × Rp → R
x λ ∈ Rm, ν ∈ Rp

g(λ, ν) = inf
x∈domf0

L(x, λ, ν) = inf
x∈domf0

(f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x))
x
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, it is concave, even when the original problem is not convex.

The dual function yields lower bounds on the optimal value  of the original problem.

For any :

Suppose some  is a feasible point ( ) for the original problem, i.e.,  and

. Then we have:

Hence

A natural question is: what is the best lower bound that can be obtained from the

Lagrange dual function? This leads to the following optimization problem:

The term “dual feasible”, to describe a pair  with  and , now

makes sense. It means, as the name implies, that  is feasible for the dual problem.

We refer to  as dual optimal or optimal Lagrange multipliers if they are optimal

for the above problem.

  Primal Dual

Function

Variables

Constraints

Problem

(λ, ν)

p∗

λ ⪰ 0, ν

g(λ, ν) ≤ p∗

x̂ x̂ ∈ S fi(x̂) ≤ 0
hi(x̂) = 0, λ ⪰ 0

L(x̂, λ, ν) = f0(x̂) + λ⊤f(x̂) + ν ⊤h(x̂) ≤ f0(x̂)

g(λ, ν) = inf
x∈domf0

L(x, λ, ν) ≤ L(x̂, λ, ν) ≤ f0(x̂)

g(λ, ν) → max
λ∈Rm, ν∈Rp

s.t. λ ⪰ 0

(λ, ν) λ ⪰ 0 g(λ, ν) > −∞
(λ, ν)

(λ∗, ν ∗)

Summary

f0(x) g(λ, ν) = min
x∈domf0

L(x, λ, ν)

x ∈ domf0 ⊆ R! λ ∈ Rm
+ , ν ∈ Rm

fi(x) ≤ 0, i = 1, … , m

hi(x) = 0, i = 1, … , p
λi ≥ 0, ∀i ∈ 1, m
–

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, … , m

hi(x) = 0, i = 1, … , p

g(λ, ν) → max
λ∈Rm,ν∈Rp

s.t. λ ⪰ 0
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Optimal

It is common to name this relation between optimals of primal and dual problems as

weak duality. For problem, we have:

While the difference between them is often called duality gap:

Note, that we always have weak duality, if we’ve formulated primal and dual problem. It

means, that if we have managed to solve the dual problem (which is always convex, no

matter whether the initial problem was or not), then we have some lower bound.

Surprisingly, there are some notable cases, when these solutions are equal.

Strong duality happens if duality gap is zero:

Notice: both  and  may be .

Several sufficient conditions known!

“Easy” necessary and sufficient conditions: unknown.

Construction of lower bound on solution of the direct problem.

It could be very complicated to solve the initial problem. But if we have the dual

problem, we can take an arbitrary  and substitute it in  - we’ll immediately

obtain some lower bound.

Checking for the problem’s solvability and attainability of the solution.

From the inequality  follows: if , then 

x∗ if feasible,
p∗ = f0(x∗)

λ∗, ν ∗ if  max  is achieved,
d∗ = g(λ∗, ν ∗)

Weak duality

p∗ ≥ d∗

p∗ − d∗ ≥ 0

Strong duality

p∗ = d∗

p∗ d∗ +∞

•

•

Useful features

•

y ∈ Ω g(y)

•

max
y∈Ω

g(y) ≤ min
x∈S

f0(x) min
x∈S

f0(x) = −∞
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 and vice versa.

Sometimes it is easier to solve a dual problem than a primal one.

In this case, if the strong duality holds:  we lose nothing.

Obtaining a lower bound on the function’s residual.

 for an arbitrary  (suboptimality certificate).

Moreover, 

Dual function is always concave

As a pointwise minimum of affine functions.

To find the Euclidean projection of  onto probability simplex 

, we solve the following problem:

Hint: Consider the problem of minimizing  subject to subject to 

. Form the partial Lagrangian

leaving the constraint  implicit. Show that  minimizes 

over .

Ω = ∅

•

g(y∗) = f0(x∗)

•

f0(x) − f ∗ ≤ f0(x) − g(y) y ∈ Ω
p∗ ∈ [g(y), f0(x)], d∗ ∈ [g(y), f0(x)]

•

Examples

Simple projection onto simplex with duality
x ∈ Rn

P = {z ∈ Rn ∣ z ⪰ 0, 1⊤z = 1}

1
2

∥y − x∥2
2 → min

y∈Rn⪰0

s.t. 1⊤y = 1

1
2

∥y − x∥2
2

y ⪰ 0, 1⊤y = 1

L(y, ν) = 1
2

∥y − x∥2
2 + ν(1⊤y − 1),

y ⪰ 0 y = (x − ν1)+ L(y, ν)
y ⪰ 0

Underdetermined Linear least squares

Problem

O

f
*

G(y)
- f.*1-g)B



Hep: poekyue naeporthosttiti
evank2

X
⑧

·.Hint
#-y- minpr

⑧↓ Tz = 1
&>Y

y2o

foly) = E/x-yp domto:

y2o
Ly, 0) = E1x-y/Is+Oliy-4E
g(0) = ? g(= inf <1y,0)

yedomf

⑦E/xx+yy-2xy) + Ofy = 1 =

- [yy+(+-xy+xX-8 - inf
Ly) y>O

y *=<x-0.1)+
8

a

⑱
· ⑦

=x = max 10,z)

9)0) = ((50) = .
. . .

.
.

.
. .

.
.



g10) -eR (D)

Balegytoei cepull
us nokexa, zt.

8 Fot zagaze nester

cunohar gbouzbennocto.
Xenobue Cnevteps)



Setting gradient to zero to find minimum 

!

:

Here we see lower bound property:

Let’s solve the dual problem:

Calculate the primal optimal and check whether this problem has strong duality or not.

x⊤x → min
x∈Rn

s.t. Ax = b

Lagrangian

L(x, ν) = x⊤x + ν ⊤(Ax − b)

Dual function

g(ν) = min
x∈Rn

L(x, ν)

∇xL(x, ν) = 2x + ν ⊤A = 2x + A⊤ν = 0 → x = − 1
2

A⊤ν

g(ν) = 1
4

ν ⊤AA⊤ν + ν ⊤(− 1
2

AA⊤ν − b) = − 1
4

ν ⊤AA⊤ν − b⊤ν

p∗ ≥ − 1
4

ν ⊤AA⊤ν − b⊤ν, ∀ν

d∗ = b⊤(AA⊤)−1
b

LP duality. Standard form

c⊤x → min
x∈Rn

s.t. Ax = b

x ⪰ 0

LP duality. Inequality form

c⊤x → min
x∈Rn

s.t. Ax ⪯ b



On rare occasions strong duality obtains for a nonconvex problem. As an important

example, we consider the problem of minimizing a nonconvex quadratic function over

the unit ball

where  and . Since , this is not a convex problem. This

problem is sometimes called the trust region problem, and arises in minimizing a

second-order approximation of a function over the unit ball, which is the region in

which the approximation is assumed to be approximately valid.

The dual problem is thus

A nonconvex quadratic problem with strong duality

x⊤Ax + 2b⊤x → min
x∈Rn

s.t. x⊤x ≤ 1

A ∈ Sn, A ⋡ 0 b ∈ Rn A ⋡ 0

Lagrangian and dual function

L(x, λ) = x⊤Ax + 2b⊤x + λ(x⊤x − 1) = x⊤(A + λI)x + 2b⊤x − λ

g(λ) = {−b⊤(A + λI)†b − λ  if A + λI ⪰ 0
−∞,  otherwise

Dual problem

− b⊤(A + λI)†b − λ → max
λ∈R

s.t. A + λI ⪰ 0

−
n

∑
i=1

(q⊤
i b)2

λi + λ
− λ → max

λ∈R

s.t. λ ≥ −λmin(A)

Connection of Fenchel and Lagrange duality

f0(x) =
n

∑
i=1

fi(xi) → min
x∈Rn

s.t. a⊤x = b

2/x,b) = xAx+26"x + 6(xx-1)=
= x/A + 61) x +25x -b A+dID0

2CA+31x*1-2b
**==A+I) g(6)= infLx,D=
=
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with (scalar) variable . Now suppose we have found an optimal dual variable 

(There are several simple methods for solving a convex problem with one scalar

variable, such as the bisection method.). It is very easy to recover the optimal value for

the primal problem.

Let  and  — function, defined on the sets  and  in Euclidian

Spaces  and  respectively. Let  be the conjugate

functions to the  and  respectively. Let  — linear mapping. We call

Fenchel - Rockafellar problem the following minimization task:

where  — preimage of . We’ll build the dual problem

using variable separation. Let’s introduce new variable . The problem could be

rewritten:

Now, we need to remember the definition of the Conjugate function:

− bν −
n∑

i=1

f ∗
i (−νai) → max

ν∈R

s.t. λ ≥ −λmin(A)

ν ∈ R ν ∗

Fenchel - Rockafellar problem

Problem

f : E → R g : G → R E G

V W f ∗ : E∗ → R, g∗ : G∗ → R
f g A : V → W

f(x) + g(Ax) → min
x∈E∩A−1(G)

A−1(G) := {x ∈ V : Ax ∈ G} G

y = Ax

f(x) + g(y) → min
x∈E, y∈G

s.t. Ax = y

Lagrangian

L(x, y, λ) = f(x) + g(y) + λ⊤(Ax − y)

Dual function

gd(λ) = min
x∈E, y∈G

L(x, y, λ)

= min
x∈E

[f(x) + (A∗λ)⊤x] + min
y∈G

[g(y) − λ⊤y] =

= − max
x∈E

[(−A∗λ)⊤x − f(x)] − max
y∈G

[λ⊤y − g(y)]



So, we have:

which allows us to formulate one of the most important theorems, that connects dual

problems and conjugate functions:

Fenchel - Rockafellar theorem Let  and  — function, defined on

the sets  and  in Euclidian Spaces  and  respectively. Let 

 be the conjugate functions to the  and  respectively.

Let  — linear mapping. Let  - optimal values of primal

and dual problems:

Then we have weak duality: . Furthermore, if the functions  and  are convex

and , then we have strong duality: . While

points  and  are optimal values for primal

and dual problem if and only if:

Convex case is especially important since if we have Fenchel - Rockafellar problem with

parameters , than the dual problem has the form .

Convex Optimization — Boyd & Vandenberghe @ Stanford

sup
y∈G

[λ⊤y − g(y)] = {g∗(λ),  if λ ∈ G∗

+∞,  otherwise

sup
x∈E

[(−A∗λ)⊤x − f(x)] = {f ∗(−A∗λ),  if λ ∈ (−A∗)−1(E∗)
+∞,  otherwise

gd(λ) = min
x∈E,y∈G

L(x, y, λ) =

= {−g∗(λ) − f ∗(−A∗λ)  if λ ∈ G∗ ∩ (−A∗)−1(E∗)
−∞,  otherwise

f : E → R g : G → R
E G V W

f ∗ : E∗ → R, g∗ : G∗ → R f g

A : V → W p∗, d∗ ∈ [−∞, +∞]

p∗ = f(x) + g(Ax) → min
x∈E∩A−1(G)

d∗ = f ∗(−A∗λ) + g∗(λ) → min
λ∈G∗∩(−A∗)−1(E∗)

,

p∗ ≥ d∗ f g

A(relint(E)) ∩ relint(G) ≠ ∅ p∗ = d∗

x∗ ∈ E ∩ A−1(G) λ∗ ∈ G∗ ∩ (−A∗)−1(E∗)

−A∗λ∗ ∈ ∂f(x∗)
λ∗ ∈ ∂g(Ax∗)

(f, g, A) (f ∗, g∗, −A∗)

References
•



Course Notes for EE227C. Lecture 13

Course Notes for EE227C. Lecture 14

Optimality conditions. KKT

Seminar 7 @ CMC MSU

Seminar 8 @ CMC MSU

Convex Optimization @ Berkeley - 10th lecture
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Theory / Convex optimization problem

Note, that there is an agreement in notation of mathematical programming. The

problems of the following type are called Convex optimization problem:

where all the functions  are convex and all the equality

constraints are affine. It sounds a bit strange, but not all convex problems are convex

optimization problems.

where  is a convex function, defined on the convex set . The necessity of affine

equality constraint is essential (see Slater’s condition in Duality).

For example, this problem is not a convex optimization problem (but implies minimizing

the convex function over the convex set):

while the following equivalent problem is a convex optimization problem

Such confusion in notation is sometimes being avoided by naming problems of type 

 as abstract form convex optimization problem.

Convex optimization problem

f(x) → min
x∈Rn

s.t. gi(x) ≤ 0, i = 1, … , m

Ax = b,

(COP)

f(x), g1(x), … , gm(x)

f(x) → min
x∈S

, (CP)

f(x) S

x2
1 + x2

2 → min
x∈Rn

s.t.  x1

1 + x2
2

≤ 0

(x1 + x2)2 = 0,

(CP)

x2
1 + x2

2 → min
x∈Rn

s.t.  x1

1 + x2
2

≤ 0

x1 + x2 = 0,

(COP)

(CP)

~
↑=Y
-Y = 0



Convex Optimization — Boyd & Vandenberghe @ Stanford

Materials
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